Sol–Gel Processed Membranes

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology
  • 366 Accesses

Abstract

The adaptation of membranes to specific applications is achieved principally via tailor-made dense or porous top-layers coated on porous supports. The sol–gel process was introduced in ceramic membrane processing in the 1980s with the aim to prepare mesoporous membranes for ultrafiltration and later on microporous membranes for nanofiltration and gas and vapor separation. R&D objectives readily changed when membranes properties were expected to go beyond a simple separation capability. New inorganic and hybrid organic–inorganic membranes with combined tailor-made properties (controlled pore size and porosity, hydrophilic or hydrophobic character, catalytic activity, ionic conduction, etc.) have been investigated as separation layers able to manage extraction, distribution, and contact operations between liquid and gas phases. The objective of this chapter is to provide the more recent advances in sol–gel processed membranes as well as the basic methods applied for their synthesis. This chapter is separated into two parts dealing with synthesis and characterization of inorganic and hybrid organic–inorganic membranes and membrane applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Allcock HR, Brennan DJ. Organosilicon derivatives of cyclic and high polymeric phosphazenes. J Organomet Chem. 1988;341:231–9.

    Article  Google Scholar 

  • Asaeda M, Yamasaki S. Separation of inorganic/organic gas mixtures by porous silica membranes. Sep Purif Technol. 2001;25:151–9.

    Article  Google Scholar 

  • Aseada M, Sakou Y, Yang J, Shimazaki K. Stability and performance of porous silica-zirconia composite membranes for pervaporation of aqueous organic solutions. J Membr Sci. 2002;209:163–75.

    Article  Google Scholar 

  • Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir. 1989;5:1431–3.

    Article  Google Scholar 

  • Avnir D, Braun S, Lev O, Ottolenghi M. Enzymes and other proteins entrapped in sol–gel materials. Chem Mater. 1994;6:1605–14.

    Article  Google Scholar 

  • Ayral A, Guizard C, Cot L. Synthesis and application of hybrid organic–inorganic colloidal gels. J Mater Sci Lett. 1994;13:1538–9.

    Article  Google Scholar 

  • Ayral A, Balzer C, Dabadie T, Guizard C, Julbe A. Sol–gel derived silica membranes with tailored microporous structures. Catal Today. 1995;25:219–24.

    Article  Google Scholar 

  • Balachandran U, Dusek JT, Mieville RL, Poeppel RB, Kleefisch MS, Pei S, Kobylinski TPC, Udovich A, Bose AC. Dense ceramic membranes for partial oxidation of methane to syngas. Appl Catal A Gen. 1995;133:19–29.

    Article  Google Scholar 

  • Barboiu M, Luca C, Guizard C, Hovnanian N, Cot L, Popescu G. Hybrid organic–inorganic fixed site dibenzo 18-crown-6 complexant membranes. J Membr Sci. 1997;129:197–207.

    Article  Google Scholar 

  • Barboiu M, Guizard C, Luca C, Albu B, Hovnanian N, Palmeri J. A new alternative to amino acids transport: facilitated transport of L-phenylalanine by hybrid siloxane membranes containing a fixed site macrocyclic complexant. J Membr Sci. 1999;161:193–206.

    Article  Google Scholar 

  • Barboiu M, Guizard C, Hovnanian N, Palmeri J, Reibel C, Cot L, Luca C. Facilitated transport of organics of biological interest: I. A new alternative for the separation of amino acids by fixed-site crown-ether polysiloxane membranes. J Membr Sci. 2000a;172:91–110.

    Article  Google Scholar 

  • Barboiu M, Guizard C, Luca C, Hovnanian N, Palmeri J, Cot L. Facilitated transport of organics of biological interest: II. Selective transport of organic acids by macrocyclic fixed site complexant membranes. J Membr Sci. 2000b;174:277–86.

    Article  Google Scholar 

  • Barboiu M, Guizard C, Hovnanian N, Cot L. New molecular receptors for organics of biological interest for the facilitated transport in liquid and solid membranes. Sep Purif Technol. 2001;25:211–8.

    Article  Google Scholar 

  • Barboiu M, Vaughan G, van der Lee A. Self-organised heteroditopic macrocyclic superstructures. Org Lett. 2003;5:3073–6.

    Article  Google Scholar 

  • Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mccullen SB, Higgins JB, Schenker JB. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  Google Scholar 

  • Benfer S, Popp U, Richter H, Siewert C, Tomandl G. Development and characterization of ceramic nanofiltration membranes. Sep Purif Technol. 2001;22–23:231–7.

    Article  Google Scholar 

  • Bhave RR. Inorganic membranes: synthesis, characteristics and applications. New York: Van Nos-trand Reinhold; 1991.

    Book  Google Scholar 

  • Binkerd CR, Ma YH, Moser WR, Dixon AG. An experimental study of the oxidative coupling of methane in porous ceramic radial-flow catalytic membrane reactors. In: Fain DE, editor. Proceedings of ICIM4 (inorganic membranes), Gatlinburg-Tennessee. 1996. p. 441–50.

    Google Scholar 

  • Blanc P, Larbot A, Palmeri J, Lopez M, Cot L. Hafnia ceramic nanofiltration membranes. Part I: preparation and characterization. J Membr Sci. 1998;149:151–61.

    Article  Google Scholar 

  • Bosc F, Ayral A, Albouy P-A, Guizard C. A simple route for low temperature synthesis of mesoporous and nanocrystalline anatase thin films. Chem Mater. 2003;15:2463–8.

    Article  Google Scholar 

  • Brinker CJ, Ward TL, Sehgal R, Raman NK, Hietala SL, Smith DM, Hua D-W, Headley TJ. Ultramicroporous silica-based supported inorganic membranes. J Membr Sci. 1993;77:165–79.

    Article  Google Scholar 

  • Burggraaf AJ. Fundamentals of membrane top-layer synthesis and processing. In: Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology. Amsterdam: Elsevier; 1996a. p. 259–329. Chapter 8.

    Chapter  Google Scholar 

  • Burggraaf AJ. Transport and separation properties of membranes with gases and vapour. In: Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology. Amsterdam: Elsevier; 1996b. p. 331–433. Chapter 9.

    Chapter  Google Scholar 

  • Burggraaf AJ, Cot L. Fundamentals of inorganic membrane science and technology. Amsterdam: Elsevier; 1996.

    Book  Google Scholar 

  • Castro RP, Cohen Y, Monbouquette HG. The permeability behavior of polyvinylpyrrolidone-modified porous silica membranes. J Membr Sci. 1993;84:151–60.

    Article  Google Scholar 

  • Chanaud P, Julbe A, Larbot A, Guizard C, Cot L, Mirodatos C, Giroir-Fendler A, Borges H. Catalytic membrane reactor for oxidative coupling of methane. Part 1: preparation and character-isation of LaOCl membranes. Catal Today. 1995;25:225–30.

    Article  Google Scholar 

  • Chaufer B, Rollin M, Grangeon A, Dulieu J. Tetracycline removal or concentration with an inorganic ultrafiltration membrane modified by a quaternized polyvinyl imidazole coating. Key Eng Mater. 1991;61–62:249–54.

    Google Scholar 

  • Coradin T, Livage J. Effect of some amino acids and peptides on silicic acid polymerization. Colloid Surf B Biointerfaces. 2001;21:329–36.

    Article  Google Scholar 

  • Coradin T, Livage J. Mesoporous alginate/silica biocomposites for enzyme immobilization. C R Chim. 2003;6:147–52.

    Article  Google Scholar 

  • Coradin T, Coupé A, Livage J. Interactions of bovine serum albumin and lysozyme with sodium silicate solutions. Colloid Surf B Biointerfaces. 2003;29:189–96.

    Article  Google Scholar 

  • Cornelius CJ, Marand E. Hybrid silica-polyimide composite membranes: gas transport properties. J Membr Sci. 2002;202:97–118.

    Article  Google Scholar 

  • Cot L, Ayral A, Durand J, Guizard C, Hovnanian N, Julbe A, Larbot A. Inorganic membranes and solid state sciences. Solid State Sci. 2000;2:313–34.

    Article  Google Scholar 

  • Cuiming W, Tongwen X, Weihua Y. Fundamental studies of a new hybrid (inorganic–organic) positively charged membrane: membrane preparation and characterizations. J Membr Sci. 2003;216:269–78.

    Article  Google Scholar 

  • Cuperus FP, van Gemert RW. Dehydration using ceramic silica pervaporation membranes: the influence of hydrodynamic conditions. Sep Purif Technol. 2002;27:225–9.

    Article  Google Scholar 

  • Dalmon JA. Catalytic membrane reactors. In: Ertl G, Knözinger H, Weitkamp J, editors. Handbook of heterogeneous catalysis. Weinheim: VCH; 1997. Chapter 9.3.

    Google Scholar 

  • De Vos RM, Verweij H. Improved performance of silica membranes for gas separation. J Membr Sci. 1998;143:37–51.

    Article  Google Scholar 

  • De Vos RM, Maier WF, Verweij H. Hydrophobic silica membranes for gas separation. J Membr Sci. 1998;158:277–88.

    Article  Google Scholar 

  • DeFriend KA, Barron AR. A simple approach to hierarchical ceramic ultrafiltration membranes. J Membr Sci. 2003;212:29–38.

    Article  Google Scholar 

  • Delaney MS, Reddy D, Wessling RA. Oxygen/nitrogen transport in glassy polymers with oxygen-binding pendent groups. J Membr Sci. 1990;49:15–36.

    Article  Google Scholar 

  • Depre L, Ingram M, Poinsignon C, Popall M. Proton conducting sulfon/sulfonamide functionalized materials based on inorganic–organic matrices. Electrochim Acta. 2000;45:1377–83.

    Article  Google Scholar 

  • Dinis da Costa JC, Lu GQ, Rudolph V, Lin YS. Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol–gel membranes. J Membr Sci. 2002;198:9–21.

    Article  Google Scholar 

  • Dokiya M. SOFC system and technology. Solid State Ion. 2002;152(153):383–92.

    Article  Google Scholar 

  • Duval J-M, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. J Membr Sci. 1993;80:189–98.

    Article  Google Scholar 

  • Farrusseng D, Julbe A, Guizard C. The first redox switchable membrane. J Am Chem Soc. 2000a;122–150:12592–3.

    Article  Google Scholar 

  • Farrusseng D, Julbe A, Lopez M, Guizard C. Investigation of sol–gel methods for the synthesis of VPO membrane materials adapted to the partial oxidation of n-butane. Catal Today. 2000b;56:211–20.

    Article  Google Scholar 

  • Gallego-Lizon T, Edwards E, Lobiundo G, Freitas dos Santos L. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. J Membr Sci. 2002;197:309–19.

    Article  Google Scholar 

  • Gellings PJ, Bouwmeester HJM. Solid state aspects of oxidation catalysis. Catal Today. 2000;58:1–53.

    Article  Google Scholar 

  • Gregg SJ, Sing KSW. Adsorption, surface area and porosity. London: Academic; 1982.

    Google Scholar 

  • Guizard C. Sol–gel chemistry and its application to porous membrane processing. In: Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology. Amsterdam: Elsevier; 1996. p. 227–58. Chapter 7.

    Chapter  Google Scholar 

  • Guizard C, Julbe A. Nanophase ceramic ion transport membranes for oxygen separation and gas stream enrichment. In: Kanellopoulos NK, editor. Recent advances in gas separation by microporous ceramic membranes. Amsterdam: Elsevier; 2000. p. 435–71.

    Chapter  Google Scholar 

  • Guizard C, Lacan P. Hybrid organic–inorganic materials applied to membrane preparation. New J Chem. 1994;18:1097–107.

    Google Scholar 

  • Guizard C, Rios G. Transport and fouling phenomena in liquid phase separation with inorganic and hybrid membranes. In: Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology. Amsterdam: Elsevier; 1996. p. 569–618. Chapter 12.

    Chapter  Google Scholar 

  • Guizard C, Larbot A, Cot L, Peres S, Rouvière J. Etude de la transition sol–gel en milieu micellaire inverse. II: principe fondamentaux. J Chim Phys. 1990;87:1901–22.

    Google Scholar 

  • Guizard C, Ajaka N, Besland MP, Larbot A, Cot L. Heteropolysiloxanes derived membrane. Potentiality for liquid and gas separation. In: Abadie MJM, Sillion B, editors. Polyimides and other high-temperature polymers. Amsterdam: Elsevier; 1991. p. 537–44.

    Google Scholar 

  • Guizard C, Julbe A, Larbot A, Cot L. Ceramic membrane processing. In: Pope EJA, Lee BI, editors. Chemical processing of ceramics. New York: Marcel Dekker; 1994. p. 501–53. Chapter 22.

    Google Scholar 

  • Guizard C, Julbe A, Ayral A. Design of nanosized structures in sol–gel derived porous solids. Application in catalyst and inorganic membranes preparation. J Mater Chem. 1999;9:55–65.

    Article  Google Scholar 

  • Guizard C, Barboiu M, Bac A, Hovnanian N. Hybrid organic–inorganic membranes with specific transport properties. Applications in separation and sensors technology. Sep Purif Technol. 2001;25:167–80.

    Article  Google Scholar 

  • Guizard C, Levy C, Dalmazio L, Julbe A. Preferential oxygen transport in nanophase mesoporous ceramic ion conducting membranes. MRS Symp Proc. 2003;752:131–42.

    Google Scholar 

  • Hamakawa S, Hayakawa T, Suzuki K, Murata K, Takehira K. Methane conversion with an electro- chemical membrane reactor. In: Nakao S, editor. Proceeding of ICIM 5 (inorganic membranes), Nagoya, Japan. 1998. p. 350–3.

    Google Scholar 

  • Hamakawa S, Shiozaki R, Hayakawa T, Suzuki K, Murata K, Takehira K, Koizumi M, Nakamura J, Uchijima T. Partial oxidation of methane to synthesis gas using Ni/Ca0.8Sr0.2TiO3 anode catalyst. J Electrochem Soc. 2000;147:839–44.

    Article  Google Scholar 

  • Hansen S. Connectivity of pores and structural units in zeolites, pillared clays and nanoparticle assemblies. Adv Mater. 1993;5:113–4.

    Article  Google Scholar 

  • Harold MP, Lee C, Burggraaf AJ, Keizer K, Zaspalis VT, De Lange RSA. Catalysis with inorganic membranes. MRS Bull. 1994;19(4):34–9.

    Article  Google Scholar 

  • Hassan MH, Way JD, Thoen PM, Dillon AC. Single component and mixed gas transport in a silica hollow fiber membrane. J Membr Sci. 1995;104:27–42.

    Article  Google Scholar 

  • Hiemenz PC, Rajagopalan R. Principles of colloid and surface chemistry. New York: Marcel Dekker; 1997.

    Book  Google Scholar 

  • Honma I, Nishikawa O, Sugimoto T, Nomura S, Nakajima H. A sol–gel derived organic/inorganic hybrid membrane for intermediate temperature PEFC. Fuel Cells. 2002a;2(1):52–8.

    Article  Google Scholar 

  • Honma I, Nakajima H, Nishikawa O, Sugimoto T, Nomura S. Amphiphilic organic/inorganic nanohybrid macromolecules for intermediate-temperature proton conducting electrolyte membranes. J Electrochem Soc. 2002b;149(10):A1389–92.

    Article  Google Scholar 

  • Hsieh HP. Inorganic membranes for separation and reaction, membrane science and technology, series 3. Amsterdam: Elsevier; 1996.

    Google Scholar 

  • Idrissi-Kandri N, Ayral A, Klotz M, Albouy P-A, El Mansouri A, Van der Lee A, Guizard C. Porous alumina thin layers using mesophase templating. Mater Lett. 2001;50:57–60.

    Article  Google Scholar 

  • Irusta S, Pina MP, Menendez M, Santamaria J. Development and application of perovskite-based catalytic membrane reactor. Catal Lett. 1998;54:69–78.

    Article  Google Scholar 

  • Iwahara H, Esaka T, Huchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981;3(4):359–63.

    Article  Google Scholar 

  • Julbe A, Guizard C. Role of membranes and membrane reactors in the hydrogen supply of fuel cells. Ann Chim Sci Mater. 2001;26(4):79–92.

    Article  Google Scholar 

  • Julbe A, Ramsay JDF. Methods for the characterization of porous structure in membrane materials. In: Burggraaf AJ, Cot L, editors. Fundamentals of inorganic membrane science and technology. Amsterdam: Elsevier; 1996. p. 67–118. Chapter 4.

    Chapter  Google Scholar 

  • Julbe A, Guizard C, Larbot A, Cot L, Giroir-Fendler A. The sol–gel approach to prepare candidate microporous inorganic membranes for membrane reactors. J Membr Sci. 1993;77:137–53.

    Article  Google Scholar 

  • Julbe A, Balzer C, Barthez JM, Guizard C, Larbot A, Cot L. Effect of non-ionic surface active agents on TEOS sols, gels and materials. J Sol–gel Sci Technol. 1995;4:89–97.

    Article  Google Scholar 

  • Julbe A, Albaric L, Hovnanian N, Guizard C, Jalibert JC, Pantazidis A, Mirodatos C. Synthesis and characterization of VMgO catalysts from original metallo-organic precursors. A method adapted to the preparation of catalytic membranes for oxy dehydrogenation of propane. In: Nakao S, editor. Proceeding of ICIM 5 (inorganic membranes), Nagoya, Japan. 1998. p. 404–7.

    Google Scholar 

  • Julbe A, Farrussseng D, Guizard C. Porous ceramic membranes for catalytic reactors—overview and new ideas. J Membr Sci. 2001a;181:3–20.

    Article  Google Scholar 

  • Julbe A, Farrusseng D, Cot D, Guizard C. The chemical valve membrane: a new concept for an auto-regulation of O2 distribution in membrane reactors. Catal Today. 2001b;67:139–49.

    Article  Google Scholar 

  • Kaiser A, Schmidt H, Böttner H. Preparation of membranes based on heteropolysiloxanes. J Membr Sci. 1985;22:257–68.

    Article  Google Scholar 

  • Kawasaki T, Tokuhiro M, Kimizuka N, Kunitake T. Hierarchical self-assembly of chiral complementary hydrogen-bond networks in water. J Am Chem Soc. 2001;123:6792–800.

    Article  Google Scholar 

  • Kharton VV, Marques FMB. Mixed ionic-electronic conductors: effects of ceramic microstructure on transport properties. Curr Opin Solid State Mater Sci. 2002;6(3):261–9.

    Article  Google Scholar 

  • Kikkinides ES, Stoitsas KA, Zaspalis VT. Correlation of structural and permeation properties in sol–gel-made nanoporous membranes. J Colloid Interface Sci. 2003;259:322–30.

    Article  Google Scholar 

  • Kilner J, Benson S, Lane J, Waller D. Ceramic ion conducting membranes for oxygen separation. Chem Ind. 1997;907–11.

    Google Scholar 

  • Klotz M, Ayral A, Guizard C, Cot L. Synthesis conditions for hexagonal mesoporous silica layers. J Mater Chem. 2000;10:663–9.

    Article  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  Google Scholar 

  • Kusakabe K, Sakamoto S, Saie T, Morooka S. Pore structure of silica membranes formed by a sol–gel technique using tetraethoxysilane and alkyltriethoxysilanes. Sep Purif Technol. 1999;16:139–46.

    Article  Google Scholar 

  • Kusakabe K, Shibao F, Zhao G, Sotowa K-I, Watanabe K, Saito T. Surface modification of silica membranes in a tubular type module. J Membr Sci. 2003;215:321–6.

    Article  Google Scholar 

  • Lacan P, Guizard C, Le Gall P, Wettling D, Cot L. Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic–inorganic materials. J Membr Sci. 1995;100:99–109.

    Article  Google Scholar 

  • Lafarga D, Lafuente A, Menendez M, Santamaria J. Thermal stability of γ isn’t in document- Al2O3/isn’t in document α-Al2O3 mesoporous membranes. J Membr Sci. 1998;147:173–85.

    Article  Google Scholar 

  • Lange C, Storck S, Tesche B, Maier WF. Selective hydrogenation reactions with a microporous membrane catalyst, prepared by sol–gel dip coating. J Catal. 1998;175(2):280–93.

    Article  Google Scholar 

  • Larbot A, Alary JA, Guizard C, Cot L. New inorganic ultrafiltration membranes: preparation and characterization. Int J Hig Technol Ceram. 1987;3:143–51.

    Article  Google Scholar 

  • Larbot A, Alami-Younssi S, Persin M, Sarrazin J, Cot L. Preparation of a isn’t in document γ-alumina nanofiltration membrane. J Membr Sci. 1994;97:167–73.

    Article  Google Scholar 

  • Leenaars AFM, Burggraaf AJ. The preparation and characterization of alumina membranes with ultrafine pores. Part 2. The formation of supported membranes. J Colloid Interface Sci. 1985;105:27–40.

    Article  Google Scholar 

  • Lefebvre X, Palmeri J, Sandeaux J, Sandeaux R, David P, Maleyre B, Guizard C, Amblard P, Diaz J-F, Lamaze B. Nanofiltration modeling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program nanoflux. Sep Purif Technol. 2003;32:117–26.

    Article  Google Scholar 

  • Leger C, Lira H, De L, Paterson R. Preparation and properties of surface modified ceramic membranes. Part II. Gas and liquid permeabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane (PDMS) silicone oil. J Membr Sci. 1996;120:135–46.

    Article  Google Scholar 

  • Lehn J-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J. 1999;5:2455–63.

    Article  Google Scholar 

  • Lehn J-M. La chimie supramoleculaire. Concepts et perspectives, De Boeck & Larcier, Paris, Bruxelle, 1997. Sep Purif Technol. 2001;25:9–55.

    Google Scholar 

  • Lin YS. Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol. 2001;25:39–55.

    Article  Google Scholar 

  • Lin H-P, Cheng Y-R, Mou C-Y. Hierarchical order in hollow spheres of mesoporous silicates. Chem Mater. 1998;10:3772–6.

    Article  Google Scholar 

  • Livage J, Coradin T, Roux C. Encapsulation of biomolecules in silica gels. J Phys Condens Matter. 2001;13:R673–91.

    Article  Google Scholar 

  • Lu Y, Cao G, Kale RP, Prabakar S, Lopez GP, Brinker CJ. Microporous silica prepared by organic templating: relationship between the molecular template and pore structure. Chem Mater. 1999;11:1223–9.

    Article  Google Scholar 

  • Maier G. Gas separation with polymer membranes. Angew Chem Int Ed Engl. 1998;37:2961–74.

    Article  Google Scholar 

  • Maiya PS, Anderson TJ, Mieville RL, Dusek T, Picciolo JL, Balachandran U. Maximizing H2 production by combined partial oxidation of CH4 and water gas shift reaction. Appl Catal A Gen. 2000;196:65–72.

    Article  Google Scholar 

  • McNicol BD, Rand DAJ, Williams KRR. Direct methanol-air fuel cells for road transportation. J Power Sources. 1999;83:15–31.

    Article  Google Scholar 

  • Mikhail RS, Brunauer S, Bodor EE. Investigations of a complete pore structure analysis. I. Analysis of micropores. J Colloid Interface Sci. 1968;26(1):45–53.

    Article  Google Scholar 

  • Mulder M. Basic principles of membrane technology. Dordrecht: Kluwer; 1991.

    Book  Google Scholar 

  • Nair BN, Yamagushi T, Okubo T, Suematsu H, Keizer K, Nakao S-I. Sol–gel synthesis of molecular sieving silica membranes. J Membr Sci. 1997;135:237–43.

    Article  Google Scholar 

  • Ohya H, Masaoka K, Aihara M, Negishi Y. Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: new inorganic lithium permselective ion exchange membrane. J Membr Sci. 1998;146:9–13.

    Article  Google Scholar 

  • Popall M, Du X-M. Inorganic–organic copolymers as solid state ionic conductors with grafted anions. Electrochim Acta. 1995;40:2305–8.

    Article  Google Scholar 

  • Qureshi N, Meagher MM, Hutkins RW. Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Membr Sci. 1999;158:115–25.

    Article  Google Scholar 

  • Raman NK, Brinker CJ. Organic template approach to molecular sieving silica membranes. J Membr Sci. 1995;105:273–9.

    Article  Google Scholar 

  • Randon J, Julbe A, David P, Jaafari K, Elmaleh S. Computer simulation of inorganic membrane morphology. J Colloid Interface Sci. 1993;161:377–88.

    Article  Google Scholar 

  • Randon J, Blanc P, Paterson R. Modification of ceramic membrane surfaces using phosphoric acid and alkyl phosphonic acids and its effects on ultrafiltration of BSA protein. J Membr Sci. 1995;98:119–29.

    Article  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K. Aminopropyl-silicate membrane for microcapsule-shaped bioartificial organs: control of molecular permeability. J Membr Sci. 2002a;202:73–80.

    Article  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K. Permeability of alginate/sol–gel synthesized aminopropyl- silicate/alginate membrane templated by calcium-alginate gel. J Membr Sci. 2002b;205:183–9.

    Article  Google Scholar 

  • Sanchez Marcano JG, Tsotsis TT. Catalytic membranes and membrane reactors. Weinheim: Wiley; 2002.

    Book  Google Scholar 

  • Sanchez C, Soler-Ilia GJ, de AA, Ribot F, Lalot T, Maye CR, Cabui V. Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem Mater. 2001;13:3061–83

    Google Scholar 

  • Sarrade S, Rios G, Carles M. Dynamic characterization and transport mechanisms of two inorganic membranes for nanofiltration. J Membr Sci. 1994;97:155–66.

    Article  Google Scholar 

  • Sastre AM, Kumar A, Shukla JP, Singh RK. Improved techniques in liquid membrane separations: an overview. Sep Purif Methods. 1998;27(2):213–98.

    Article  Google Scholar 

  • Schaefer DW. Engineered porous materials. MRS Bull. 1994;19(4):14–7.

    Article  Google Scholar 

  • Schoonman J. Nanoionics. Solid State Ion. 2002;157:319–26.

    Article  Google Scholar 

  • Schrotter JC, Smaihi M, Guizard C. Polyimide-siloxane hybrid materials: influence of coupling agent addition on microstructure and properties. J Appl Polym Sci. 1996;61:2137–49.

    Article  Google Scholar 

  • Soler-Illia GJ, de AA, Crepaldi EL, Grosso D, Sanchez C. Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci. 2003;8(1):109–26.

    Google Scholar 

  • Steele B. Ceramic ion conducting membranes and their technological application. C R Acad Sci. Paris, Series Ilc, Title 1. 1998; 533–43.

    Google Scholar 

  • Szegner J, Yueng AKL, Varma A. Effect of catalyst distribution in a membrane reactor: experiments and model. AIChE J. 1997;43(8):2059–72.

    Article  Google Scholar 

  • Tsai CY, Ma YH, Moser WR, Dixon AG. Modeling and simulation of a non isothermal catalytic membrane reactor. Chem Eng Commun. 1995;134:107–32.

    Article  Google Scholar 

  • Tsai CY, Tam SY, Lu YF, Brinker CJ. Dual-layer asymmetric microporous silica membranes. J Membr Sci. 2000;169:255–68.

    Article  Google Scholar 

  • Tsuru T. Inorganic porous membranes for liquid phase separation. Sep Purif Methods. 2001;30(2):191–220.

    Article  Google Scholar 

  • Tuller HL. Ionic conduction in nanocrystalline materials. Solid State Ion. 2000;131:143–57.

    Article  Google Scholar 

  • Vacassy R, Guizard C, Thoraval V, Cot L. Synthesis and characterization of microporous zirconia powders: application in nanofilters and nanofiltration characteristics. J Membr Sci. 1997a;132:109–18.

    Article  Google Scholar 

  • Vacassy R, Palmeri J, Guizard C, Thoraval V, Cot L. Performance of stabilized zirconia nanofilters under dynamic conditions. Sep Purif Technol. 1997b;12:243–53.

    Article  Google Scholar 

  • Van Bommel KJC, Frigerri A, Shinkai S. Organic templates fort the generation of inorganic materials. Angew Chem Int Ed Engl. 2003;42:980–99.

    Article  Google Scholar 

  • Van Gemert RW, Cuperus FP. Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation. J Membr Sci. 1995;105:287–91.

    Article  Google Scholar 

  • Van Gestel TV, Vandecasteele C, Buekenhoudt A, Dotremont C, Luyten J, Leysen R, Van der Bruggen B, Maes G. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability. J Membr Sci. 2002;207:73–89.

    Article  Google Scholar 

  • Ward GL, Gaines GL, Alger MM, Stanley TJ. Gas barrier improvement using vermiculite and mica in polymer films. J Membr Sci. 1991;55:173–80.

    Article  Google Scholar 

  • Wei Q, Wang D. Pore surface fractal dimension of sol–gel derived Al2O3–SiO2 membranes. Mater Lett. 2003;57:2015–20.

    Article  Google Scholar 

  • West GD, Diamond GG, Holland D, Smith ME, Lewis MH. Gas transport mechanisms through sol–gel derived templated membranes. J Membr Sci. 2002;203:53–69.

    Article  Google Scholar 

  • Wu JCS, Sabol H, Smith GW, Flowers DL. Characterization of hydrogen-permselective microporous ceramic membranes. J Membr Sci. 1994;96:275–87.

    Article  Google Scholar 

  • Xomeritakis G, Naik S, Braunbarth CM, Cornelius CJ, Pardey R, Brinker CJ. Organic-templated silica membranes: I. Gas and vapor transport properties. J Membr Sci. 2003;215:225–33.

    Article  Google Scholar 

  • Yeung AKL, Sebastian JM, Varma A. Mesoporous alumina membranes: synthesis, characterization, thermal stability and nonuniform distribution of catalyst. J Membr Sci. 1997;131:9–28.

    Article  Google Scholar 

  • Zhao H-B, Plantz H-B, Gu J-H, Li A-W, Stroh N, Brunner H, **ong G-X. Preparation of palladium composite membranes by modified electroless plating procedure. J Membr Sci. 1998;142:147–57.

    Article  Google Scholar 

  • Zhong S-H, Li C-F, **ao X-F. Preparation and characterization of polyimide-silica hybrid membranes on kieselguhr–mullite supports. J Membr Sci. 2002;199:53–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guizard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Guizard, C., Ayral, A., Barboiu, M., Julbe, A. (2016). Sol–Gel Processed Membranes. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation