Inference Given Summary Statistics

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

In many practical situations, where one is interested in employing Bayesian inference methods to infer parameters of interest, a significant challenge is that actual data is not available. Rather, what is most commonly available in the literature are summary statistics on the data, on parameters of interest, or on functions thereof. In this chapter, we present a general framework relying on the maximum entropy principle, and employing approximate Bayesian computation methods, to infer a joint posterior density on parameters of interest given summary statistics, as well as other known details about the experiment or observational system behind the published statistics. By essentially redoing the experimental fitting using proposed data sets, the method ensures that the inferred joint posterior density on model parameters is consistent with the given statistics and with the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,069.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,390.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is worth noting that, presuming reported error bars in lnk(T) over a sufficient number of temperature points and considering a Gaussian parameter PDF, the joint correlation structure of p(A, n, E) has been inferred through other means [23]. However, neither of these assumptions is required in the present approach.

  2. 2.

    We will assume that the author had an assumption of normality, hence their interpretation as 95 % quantiles.

  3. 3.

    Again, we do this to reduce the computational cost of generating data sets over multiple dimensions. Although we do not marginalize over the dimensionality, we show that for a reasonable choice of the dimension parameter N = 5, we can still recover consistent data sets.

References

  1. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population genomics. Genetics 162(4), 2025–2035 (2002)

    Google Scholar 

  2. Bernardo, J., Smith, A.: Bayesian Theory. Wiley Series in Probability and Statistics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  3. Berry, R., Najm, H., Debusschere, B., Adalsteinsson, H., Marzouk, Y.: Data-free inference of the joint distribution of uncertain model parameters. J. Comput. Phys. 231, 2180–2198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bevington, P., Robinson, D.: Data Reduction and Error Analysis for the Physical Sciences, 2nd edn. McGraw-Hill, New York (1992)

    Google Scholar 

  5. Box, G.E., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery, 2nd edn. Wiley, New York (2005)

    MATH  Google Scholar 

  6. Carlin, B.P., Louis, T.A.: Bayesian Methods for Data Analysis. Chapman and Hall/CRC, Boca Raton (2011)

    MATH  Google Scholar 

  7. Caticha, A., Preuss, R.: Maximum entropy and Bayesian data analysis: entropic prior distributions. Phys. Rev. E 70(4), 046127 (2004)

    Article  Google Scholar 

  8. Chowdhary, K., Najm, H.: Data free inference with processed data products. Stat. Comput. 1–21 (2014). doi:10.1007/s11222-014-9484-y

    Google Scholar 

  9. Clyde, M.: Bayesian model averaging and model search strategies (with discussion). In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics 6, pp. 157–185. Oxford University Press, New York (1999)

    Google Scholar 

  10. Dupuis, P., Ellis, R.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley-Interscience, New York (1997)

    Book  MATH  Google Scholar 

  11. Gelman, A., Meng, X.L., Stern, H.: Posterior Predictive Assessment of Model Fitness via Realized Discrepancies. Statistica Sinica 6, 733–807 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Genest, C.: A characterization theorem for externally Bayesian groups. Ann. Stat. 12(3), 1100–1105 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Genest, C., Zidek, J.: Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gregory, P.: Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  15. Hansen, P.C., Pereyra, V., Scherer, G.: Least Squares Data Fitting with Applications. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  16. Hebrard, E., Dobrijevic, M.: How measurements of rate coefficients at low temperature increase the predictivity of photochemical models of Titan’s atmosphere. J. Phys. Chem. 113, 11227–11237 (2009)

    Article  Google Scholar 

  17. IJUQ: Reprinted from Najm, H.N., Berry, R.D., Safta, C., Sargsyan, K., Debusschere, B.J.: Data-free inference of uncertain parameters in chemical models. Int. J. Uncertain. Quantif. 4, 111–132 (2014); Copyright (2014); with permission from Begell House, Inc

    Google Scholar 

  18. Jaynes, E., Bretthorst, G.L. (eds.): Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Khalil, M., Najm, H.: Probabilistic inference of reaction rate parameters based on summary statistics. In: Proceedings of the 9th U.S. National Combustion Meeting, Cincinnati (2015)

    Google Scholar 

  20. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic, New York (1999). Support Plane Analysis: see pp. 122–123

    Google Scholar 

  21. Lehmann, E., Casella, G.: Theory of Point Estimation. Springer Texts in Statistics. Springer, New York (2003). https://books.google.com/books?id=9St7DCbu9AUC

    MATH  Google Scholar 

  22. Lynch, S., Western, B.: Bayesian posterior predictive checks for complex models. Sociol. Methods Res. 32(3), 301–335 (2004). doi:10.1177/0049124103257303

    Article  MathSciNet  Google Scholar 

  23. Nagy, T., Turányi, T.: Determination of the uncertainty domain of the arrhenius parameters needed for the investigation of combustion kinetic models. Reliab. Eng. Syst. Saf. 107, 29–34 (2012)

    Article  Google Scholar 

  24. Najm, H., Berry, R., Safta, C., Sargsyan, K., Debusschere, B.: Data free inference of uncertain parameters in chemical models. Int. J. Uncertain. Quantif. 4(2), 111–132 (2014). doi:10.1615/Int.J.UncertaintyQuantification.2013005679

    Article  MathSciNet  Google Scholar 

  25. Park, T., Casella, G.: The Bayesian Lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  27. Sisson, S.A., Fan, Y.: Likelihood-free Markov chain Monte Carlo. In: Brooks, S. (ed.) Handbook of Markov Chain Monte Carlo. Chapman & Hall, London (2010)

    Google Scholar 

  28. Sivia, D.S., Carlile, C.J.: Molecular-spectroscopy and Bayesian spectral-analysis – how many lines are there. J. Chem. Phys. 96(1), 170 – 178 (1992)

    Article  Google Scholar 

  29. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Jr., Lissianski, V., Zhiwei, Q.: GRI mechanism for methane/air, version 3.0 (1999), 30 July 1999. www.me.berkeley.edu/gri_mech

  30. STCO: Reprinted from the Chowdhary, K., Najm, H.N.: Data free inference with processed data products. J. Stat. Comput. 1–21 (2014); Copyright (2014); with permission from Springer, U.S.

    Google Scholar 

  31. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  32. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58, 267–288 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib N. Najm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Najm, H.N., Chowdhary, K. (2017). Inference Given Summary Statistics. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_68

Download citation

Publish with us

Policies and ethics

Navigation