Toward Machine Wald

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed by humans because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to think as humans, especially when faced with uncertainty, is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well-posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tends to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with decision theory, machine learning, Bayesian inference, stochastic optimization, robust optimization, optimal uncertainty quantification, and information-based complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,069.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,351.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  2. Ackerman, N.L., Freer, C.E., Roy, D.M.: On the computability of conditional probability. ar**v:1005.3014 (2010)

    Google Scholar 

  3. Adams, M., Lashgari, A., Li, B., McKerns, M., Mihaly, J.M., Ortiz, M., Owhadi, H., Rosakis, A.J., Stalzer, M., Sullivan, T.J.: Rigorous model-based uncertainty quantification with application to terminal ballistics. Part II: systems with uncontrollable inputs and large scatter. J. Mech. Phys. Solids 60(5), 1002–1019 (2012)

    Google Scholar 

  4. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6(2), 170–176 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belot, G.: Bayesian orgulity. Philos. Sci. 80(4), 483–503 (2013)

    Article  MathSciNet  Google Scholar 

  7. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  8. Ben-Tal, A., Hochman, E.: More bounds on the expectation of a convex function of a random variable. J. Appl. Probab. 9, 803–812 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bentkus, V.: A remark on the inequalities of Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand. Liet. Mat. Rink. 42(3), 332–342 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Bentkus, V.: On Hoeffding’s inequalities. Ann. Probab. 32(2), 1650–1673 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bentkus, V., Geuze, G.D.C., van Zuijlen, M.C.A.: Optimal Hoeffding-like inequalities under a symmetry assumption. Statistics 40(2), 159–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bernstein, S.N.: Collected Works. Izdat. “Nauka”, Moscow (1964)

    Google Scholar 

  14. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim. 15(3), 780–804 (electronic) (2005)

    Google Scholar 

  16. Birge, J.R., Wets, R.J.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Prog. Stud. 27, 54–102 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Blackwell, D.: Equivalent comparisons of experiments. Ann. Math. Stat. 24(2), 265–272 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  19. Boţ, R.I., Lorenz, N., Wanka, G.: Duality for linear chance-constrained optimization problems. J. Korean Math. Soc. 47(1), 17–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boucheron, S., Lugosi, G., Massart, P.: A sharp concentration inequality with applications. Random Struct. Algorithms 16(3), 277–292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brown, L.D.: Minimaxity, more or less. In: Gupta, S.S., Berger, J.O. (eds.) Statistical Decision Theory and Related Topics V, pp. 1–18. Springer, New York (1994)

    Google Scholar 

  22. Brown, L.D.: An essay on statistical decision theory. J. Am. Stat. Assoc. 95(452), 1277–1281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Castillo, I., Nickl, R.: Nonparametric Bernstein–von Mises theorems in Gaussian white noise. Ann. Stat. 41(4), 1999–2028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, W., Sim, M., Sun, J., Teo, C.-P.: From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper. Res. 58(2), 470–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes.: General Theory and Structure. Probability and its Applications (New York), vol. II, 2nd edn. Springer, New York (2008)

    Google Scholar 

  26. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diaconis, P., Freedman, D.A.: On the consistency of Bayes estimates. Ann. Stat. 14(1), 1–67 (1986). With a discussion and a rejoinder by the authors

    Google Scholar 

  28. Doob, J.L.: Application of the theory of martingales. In: Le Calcul des Probabilités et ses Applications, Colloques Internationaux du Centre National de la Recherche Scientifique, vol. 13, pp. 23–27. Centre National de la Recherche Scientifique, Paris (1949)

    Google Scholar 

  29. Doob, J.L.: Measure Theory. Graduate Texts in Mathematics, vol. 143. Springer, New York (1994)

    Google Scholar 

  30. Drenick, R.F.: Aseismic design by way of critical excitation. J. Eng. Mech. Div. Am. Soc. Civ. Eng. 99(4), 649–667 (1973)

    Google Scholar 

  31. Dubins, L.E.: On extreme points of convex sets. J. Math. Anal. Appl. 5(2), 237–244 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002). Revised reprint of the 1989 original

    Google Scholar 

  33. Dvoretzky, A., Wald, A., Wolfowitz, J.: Elimination of randomization in certain statistical decision procedures and zero-sum two-person games. Ann. Math. Stat. 22(1), 1–21 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  34. Edmundson, H.P.: Bounds on the expectation of a convex function of a random variable. Technical report, DTIC Document (1957)

    Google Scholar 

  35. Elishakoff, I., Ohsaki, M.: Optimization and Anti-optimization of Structures Under Uncertainty. World Scientific, London (2010)

    Book  MATH  Google Scholar 

  36. Ermoliev, Y., Gaivoronski, A., Nedeva, C.: Stochastic optimization problems with incomplete information on distribution functions. SIAM J. Control Optim. 23(5), 697–716 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fisher, R.: The Design of Experiments. Oliver and Boyd, Edinburgh (1935)

    Google Scholar 

  38. Fisher, R.: Statistical methods and scientific induction. J. R. Stat. Soc. Ser. B. 17, 69–78 (1955)

    MathSciNet  MATH  Google Scholar 

  39. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. A 222, 309–368 (1922)

    Article  MATH  Google Scholar 

  40. Fisher, R.A.: “Student”. Ann. Eugen. 9(1), 1–9 (1939)

    Article  MATH  Google Scholar 

  41. Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions-the dependent case. Math. Oper. Res. 13(3), 377–394 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Freedman, D.A.: On the asymptotic behavior of Bayes’ estimates in the discrete case. Ann. Math. Stat. 34, 1386–1403 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Freedman, D.A.: On the Bernstein-von Mises theorem with infinite-dimensional parameters. Ann. Stat. 27(4), 1119–1140 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Gaivoronski, A.A.: A numerical method for solving stochastic programming problems with moment constraints on a distribution function. Ann. Oper. Res. 31(1), 347–369 (1991)

    Article  MathSciNet  Google Scholar 

  45. Gassmann, H., Ziemba, W.T.: A tight upper bound for the expectation of a convex function of a multivariate random variable. In: Stochastic Programming 84 Part I. Mathematical Programming Study, vol. 27, pp. 39–53. Springer, Berlin (1986)

    Google Scholar 

  46. Geoffrion, A.M.: Generalized Benders decomposition. JOTA 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18(2), 141–153 (1989)

    Article  MATH  Google Scholar 

  48. Godwin, H.J.: On generalizations of Tchebychef’s inequality. J. Am. Stat. Assoc. 50(271), 923–945 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  49. Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4, part 1), 902–917 (2010)

    Google Scholar 

  50. Halmos, P.R., Savage, L.J.: Application of the Radon-Nikodym theorem to the theory of sufficient statistics. Ann. Math. Stat. 20(2), 225–241 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  51. Han, S., Tao, M., Topcu, U., Owhadi, H., Murray, R.M.: Convex optimal uncertainty quantification. SIAM J. Optim. 25(23), 1368–1387 (2015). ar**v:1311.7130

    Google Scholar 

  52. Han, S., Topcu, U., Tao, M., Owhadi, H., Murray, R.: Convex optimal uncertainty quantification: algorithms and a case study in energy storage placement for power grids. In: American Control Conference (ACC), 2013, Washington, DC, pp. 1130–1137. IEEE (2013)

    Google Scholar 

  53. Hanasusanto, G.A., Roitch, V., Kuhn, D., Wiesemann, W.: A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math. Program. 151(1), 35–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hoeffding, W.: On the distribution of the number of successes in independent trials. Ann. Math. Stat. 27(3), 713–721 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  55. Hotelling, H.: Abraham Wald. Am. Stat. 5(1), 18–19 (1951)

    Article  Google Scholar 

  56. Huang, C.C., Vertinsky, I., Ziemba, W.T.: Sharp bounds on the value of perfect information. Oper. Res. 25(1), 128–139 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  57. Huang, C.C., Ziemba, W.T., Ben-Tal, A.: Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming. Oper. Res. 25(2), 315–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  58. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  59. Huber, P.J.: The 1972 Wald lecture- Robust statistics: a review. Ann. Math. Stat. 1041–1067 (1972)

    Google Scholar 

  60. Isii, K.: On a method for generalizations of Tchebycheff’s inequality. Ann. Inst. Stat. Math. Tokyo 10(2), 65–88 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  61. Isii, K.: The extrema of probability determined by generalized moments. I. Bounded random variables. Ann. Inst. Stat. Math. 12(2), 119–134; errata, 280 (1960)

    Google Scholar 

  62. Isii, K.: On sharpness of Tchebycheff-type inequalities. Ann. Inst. Stat. Math. 14(1):185–197, 1962/1963.

    Google Scholar 

  63. Jaynes, E.T.: Probability Theory. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  64. Joe, H.: Majorization, randomness and dependence for multivariate distributions. Ann. Probab. 15(3), 1217–1225 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  65. Johnstone, I.M.: High dimensional Bernstein–von Mises: simple examples. In Borrowing Strength: Theory Powering Applications—A Festschrift for Lawrence D. Brown, volume 6 of Inst. Math. Stat. Collect., pages 87–98. Inst. Math. Statist., Beachwood, OH (2010)

    Google Scholar 

  66. Kac, M., Slepian, D.: Large excursions of Gaussian processes. Ann. Math. Stat. 30, 1215–1228 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  67. Kall, P.: Stochastric programming with recourse: upper bounds and moment problems: a review. Math. Res. 45, 86–103 (1988)

    Google Scholar 

  68. Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin (1975) Schriftenreihe des Zentralinstituts für Mathematik und Mechanik bei der Akademie der Wissenschaften der DDR, Heft 23.

    Google Scholar 

  69. Kamga, P.-H.T., Li, B., McKerns, M., Nguyen, L.H., Ortiz, M., Owhadi, H., Sullivan, T.J.: Optimal uncertainty quantification with model uncertainty and legacy data. J. Mech. Phys. Solids 72, 1–19 (2014)

    Article  Google Scholar 

  70. Karlin, S., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics, vol. XV. Interscience Publishers/Wiley, New York/London/Sydney (1966)

    Google Scholar 

  71. Kendall, D.G.: Simplexes and vector lattices. J. Lond. Math. Soc. 37(1), 365–371 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  72. Kidane, A.A., Lashgari, A., Li, B., McKerns, M., Ortiz, M., Owhadi, H., Ravichandran, G., Stalzer, M., Sullivan, T.J.: Rigorous model-based uncertainty quantification with application to terminal ballistics. Part I: Systems with controllable inputs and small scatter. J. Mech. Phys. Solids 60(5), 983–1001 (2012)

    Google Scholar 

  73. Kiefer, J.: Optimum experimental designs. J. R. Stat. Soc. Ser. B 21, 272–319 (1959)

    MathSciNet  MATH  Google Scholar 

  74. Kiefer, J.: Collected Works, vol. III. Springer, New York (1985)

    Google Scholar 

  75. Kleijn, B.J.K., van der Vaart, A.W.: The Bernstein-Von-Mises theorem under misspecification. Electron. J. Stat. 6, 354–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing Co., New York (1956). Translation edited by Nathan Morrison, with an added bibliography by A. T. Bharucha-Reid

    Google Scholar 

  77. Kreĭn, M.G.: The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development. In: Dynkin, E.B. (ed.) Eleven Papers on Analysis, Probability, and Topology, American Mathematical Society Translations, Series 2, vol. 12, pp. 1–122. American Mathematical Society, New York (1959)

    Google Scholar 

  78. Kurz, H.D., Salvadori, N.: Understanding ‘Classical’ Economics: Studies in Long Period Theory. Routledge, London/New York (2002)

    Google Scholar 

  79. Laird, N.M.: A conversation with F. N. David. Stat. Sci. 4, 235–246 (1989)

    Article  Google Scholar 

  80. Le Cam, L.: On some asymptotic properties of maximum likelihood estimates and related Bayes’ estimates. Univ. Calif. Publ. Stat. 1, 277–329 (1953)

    MathSciNet  Google Scholar 

  81. Le Cam, L.: An extension of Wald’s theory of statistical decision functions. Ann. Math. Stat. 26, 69–81 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  82. Le Cam, L.: Sufficiency and approximate sufficiency. Ann. Math. Stat. 35, 1419–1455 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  83. Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. Springer, New York (1986)

    Book  MATH  Google Scholar 

  84. Leahu, H.: On the Bernstein–von Mises phenomenon in the Gaussian white noise model. Electron. J. Stat. 5, 373–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  85. Lehmann, E.L.: “Student” and small-sample theory. Stat. Sci. 14(4), 418–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  86. Lehmann, E.L.: Optimality and symposia: some history. Lect. Notes Monogr. Ser. 44, 1–10 (2004)

    MathSciNet  MATH  Google Scholar 

  87. Lehmann, E.L.: Some history of optimality. Lect. Notes Monogr. Ser. 57, 11–17 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Lenhard, J.: Models and statistical inference: the controversy between Fisher and Neyman–Pearson. Br. J. Philos. Sci. 57(1), 69–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  89. Leonard, R.: Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to Social Science, 1900–1960. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  90. Lynch, P.: The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227(7), 3431–3444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  91. Madansky, A.: Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Stat. 743–746 (1959)

    Google Scholar 

  92. Madansky, A.: Inequalities for stochastic linear programming problems. Manag. Sci. 6(2), 197–204 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  93. Mangel, M., Samaniego, F.J.: Abraham Wald’s work on aircraft survivability. J. A. S. A. 79(386), 259–267 (1984)

    Article  Google Scholar 

  94. Marshall, A.W., Olkin, I.: Multivariate Chebyshev inequalities. Ann. Math. Stat. 31(4), 1001–1014 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  95. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Mathematics in Science and Engineering, vol. 143. Academic [Harcourt Brace Jovanovich Publishers], New York (1979)

    Google Scholar 

  96. McKerns, M.M., Strand, L., Sullivan, T.J., Fang, A., Aivazis, M.A.G.: Building a framework for predictive science. In: Proceedings of the 10th Python in Science Conference (SciPy 2011) (2011)

    Google Scholar 

  97. Morgenstern, O.: Abraham Wald, 1902–1950. Econometrica: J. Econom. Soci. 361–367 (1951)

    Google Scholar 

  98. Mulholland, H.P., Rogers, C.A.: Representation theorems for distribution functions. Proc. Lond. Math. Soc. (3) 8(2), 177–223 (1958)

    Google Scholar 

  99. Nash, J.: Non-cooperative games. Ann. Math. (2) 54, 286–295 (1951)

    Google Scholar 

  100. Nash, J.F. Jr.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U. S. A. 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  101. Nemirovsky, A.S.: Information-based complexity of linear operator equations. J. Complex. 8(2), 153–175 (1992)

    Article  MathSciNet  Google Scholar 

  102. Neyman, J.: Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. Lond. Ser. A 236(767), 333–380 (1937)

    Article  MATH  Google Scholar 

  103. Neyman, J.: A Selection of Early Statistical Papers of J. Neyman. University of California Press, Berkeley (1967)

    Google Scholar 

  104. Neyman, J., Pearson, E.S.: On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A, 175–240, 263–294 (1928)

    MATH  Google Scholar 

  105. Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A 231, 289–337 (1933)

    Article  MATH  Google Scholar 

  106. Olkin, I., Pratt, J.W.: A multivariate Tchebycheff inequality. Ann. Math. Stat. 29(1), 226–234 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  107. Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. (Research spotlights) (2016, to appear). ar**v:1503.03467

    Google Scholar 

  108. Owhadi, H., Scovel, C.: Qualitative robustness in Bayesian inference. ar**v:1411.3984 (2014)

    Google Scholar 

  109. Owhadi, H., Scovel, C.: Brittleness of Bayesian inference and new Selberg formulas. Commun. Math. Sci. 14(1), 83–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  110. Owhadi, H., Scovel, C.: Extreme points of a ball about a measure with finite support. Commun. Math. Sci. (2015, to appear). ar**v:1504.06745

    Google Scholar 

  111. Owhadi, H., Scovel, C.: Separability of reproducing kernel Hilbert spaces. Proc. Am. Math. Soc. (2015, to appear). ar**v:1506.04288

    Google Scholar 

  112. Owhadi, H., Scovel, C., Sullivan, T.J.: Brittleness of Bayesian inference under finite information in a continuous world. Electron. J. Stat. 9, 1–79 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  113. Owhadi, H., Scovel, C., Sullivan, T.J.: On the Brittleness of Bayesian Inference. SIAM Rev. (Research Spotlights) (2015)

    Google Scholar 

  114. Owhadi, H., Scovel, C., Sullivan, T.J., McKerns, M., Ortiz, M.: Optimal Uncertainty Quantification. SIAM Rev. 55(2), 271–345 (2013)

    Google Scholar 

  115. Packel, E.W.: The algorithm designer versus nature: a game-theoretic approach to information-based complexity. J. Complex. 3(3), 244–257 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  116. Pearson, E.S.: ‘Student’ A Statistical Biography of William Sealy Gosset. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  117. Pfanzagl, J.: Conditional distributions as derivatives. Ann. Probab. 7(6), 1046–1050 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  118. Pinelis, I.: Exact inequalities for sums of asymmetric random variables, with applications. Probab. Theory Relat. Fields 139(3-4):605–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  119. Pinelis, I.: On inequalities for sums of bounded random variables. J. Math. Inequal. 2(1), 1–7 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  120. Platzman, G.W.: The ENIAC computations of 1950-gateway to numerical weather prediction. Bull. Am. Meteorol. Soc. 60, 302–312 (1979)

    Article  Google Scholar 

  121. Ressel, P.: Some continuity and measurability results on spaces of measures. Mathematica Scandinavica 40, 69–78 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  122. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10(4), 425–437 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  123. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control 12(2), 268–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  124. Rojo, J.: Optimality: The Second Erich L. Lehmann Symposium. IMS, Beachwood (2006)

    MATH  Google Scholar 

  125. Rojo, J.: Optimality: The Third Erich L. Lehmann Symposium. IMS, Beachwood (2009)

    MATH  Google Scholar 

  126. Rojo, J., Pérez-Abreu, V.: The First Erich L. Lehmann Symposium: Optimality. IMS, Beachwood (2004)

    MATH  Google Scholar 

  127. Rustem, B., Howe, M.: Algorithms for Worst-Case Design and Applications to Risk Management. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  128. Savage, L.J.: The theory of statistical decision. J. Am. Stat. Assoc. 46, 55–67 (1951)

    Article  MATH  Google Scholar 

  129. Scovel, C., Hush, D., Steinwart, I.: Approximate duality. J. Optim. Theory Appl. 135(3), 429–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  130. Shapiro, A., Kleywegt, A.: Minimax analysis of stochastic problems. Optim. Methods Softw. 17(3), 523–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  131. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22(1), 245–270 (1997)

    MathSciNet  MATH  Google Scholar 

  132. Singpurwalla, N.D., Swift, A.: Network reliability and Borel’s paradox. Am. Stat. 55(3), 213–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  133. Smith, J.E.: Generalized Chebychev inequalities: theory and applications in decision analysis. Oper. Res. 43(5), 807–825 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  134. Sniedovich, M.: The art and science of modeling decision-making under severe uncertainty. Decis. Mak. Manuf. Serv. 1(1–2), 111–136 (2007)

    MathSciNet  MATH  Google Scholar 

  135. Sniedovich, M.: A classical decision theoretic perspective on worst-case analysis. Appl. Math. 56(5), 499–509 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  136. Sniedovich, M.: Black Swans, new Nostradamuses, Voodoo decision theories, and the science of decision making in the face of severe uncertainty. Int. Trans. Oper. Res. 19(1–2), 253–281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  137. Spanos, A.: Why the Decision-Theoretic Perspective Misrepresents Frequentist Inference (2014). https://secure.hosting.vt.edu/www.econ.vt.edu/directory/spanos/spanos10.pdf

    Google Scholar 

  138. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I, pp. 197–206. University of California Press, Berkeley/Los Angeles (1956)

    Google Scholar 

  139. Strasser, H.: Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory, vol. 7. Walter de Gruyter, Berlin/New York (1985)

    Book  MATH  Google Scholar 

  140. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  141. Student: The probable error of a mean. Biometrika 1–25 (1908)

    Google Scholar 

  142. Sullivan, T.J., McKerns, M., Meyer, D., Theil, F., Owhadi, H., Ortiz, M.: Optimal uncertainty quantification for legacy data observations of Lipschitz functions. ESAIM Math. Model. Numer. Anal. 47(6), 1657–1689 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  143. Tintner, G.: Abraham Wald’s contributions to econometrics. Ann. Math. Stat. 23, 21–28 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  144. Tjur, T.: Conditional Probability Distributions, Lecture Notes, No. 2. Institute of Mathematical Statistics, University of Copenhagen, Copenhagen (1974)

    Google Scholar 

  145. Tjur, T.: Probability Based on Radon Measures. Wiley Series in Probability and Mathematical Statistics. Wiley, Chichester (1980)

    MATH  Google Scholar 

  146. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Computer Science and Scientific Computing. Academic, Boston (1988). With contributions by A. G. Werschulz and T. Boult

    Google Scholar 

  147. Tukey, J.W.: Statistical and Quantitative Methodology. Trends in Social Science, pp. 84–136. Philisophical Library, New York (1961)

    Google Scholar 

  148. Tukey, J.W.: The future of data analysis. Ann. Math. Stat. 33, 1–67 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  149. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  150. Vandenberghe, L., Boyd, S., Comanor, K.: Generalized Chebyshev bounds via semidefinite programming. SIAM Rev. 49(1), 52–64 (electronic) (2007)

    Google Scholar 

  151. Varadarajan, V.S.: Groups of automorphisms of Borel spaces. Trans. Am. Math. Soc. 109(2), 191–220 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  152. von Mises, R.: Mathematical Theory of Probability and Statistics. Edited and Complemented by Hilda Geiringer. Academic, New York (1964)

    MATH  Google Scholar 

  153. Von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100(1), 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  154. Von Neumann, J., Goldstine, H.H.: Numerical inverting of matrices of high order. Bull. Am. Math. Soc. 53, 1021–1099 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  155. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  156. Wald, A.: Contributions to the theory of statistical estimation and testing hypotheses. Ann. Math. Stat. 10(4), 299–326 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  157. Wald, A.: Statistical decision functions which minimize the maximum risk. Ann. Math. (2) 46, 265–280 (1945)

    Google Scholar 

  158. Wald, A.: An essentially complete class of admissible decision functions. Ann. Math. Stat. 18, 549–555 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  159. Wald, A.: Sequential Analysis. 1947.

    MATH  Google Scholar 

  160. Wald, A.: Statistical decision functions. Ann. Math. Stat. 20, 165–205 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  161. Wald, A.: Statistical Decision Functions. Wiley, New York (1950)

    MATH  Google Scholar 

  162. Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Stat. 19(3), 326–339 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  163. Wald, A., Wolfowitz, J.: Characterization of the minimal complete class of decision functions when the number of distributions and decisions is finite. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 149–157. University of California Press, Berkeley (1951)

    Google Scholar 

  164. Wasserman, L.: Rise of the Machines. Past, Present and Future of Statistical Science. CRC Press, Boca Raton (2013)

    Google Scholar 

  165. Wasserman, L., Lavine, M., Wolpert, R.L.: Linearization of Bayesian robustness problems. J. Stat. Plann. Inference 37(3), 307–316 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  166. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  167. Wilson, M.: How a story from World War II shapes Facebook today. IBM Watson (2012). http://www.fastcodesign.com/1671172/how-a-story-from-world-war-ii-shapes-facebook-today.

  168. Winkler, G.: On the integral representation in convex noncompact sets of tight measures. Mathematische Zeitschrift 158(1), 71–77 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  169. Winkler, G.: Extreme points of moment sets. Math. Oper. Res. 13(4), 581–587 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  170. Wolfowitz, J.: Abraham Wald, 1902–1950. Ann. Math. Stat. 23, 1–13 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  171. Woźniakowski, H.: Probabilistic setting of information-based complexity. J. Complex. 2(3), 255–269 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  172. Woźniakowski, H.: What is information-based complexity? In Essays on the Complexity of Continuous Problems, pp. 89–95. European Mathematical Society, Zürich (2009)

    Google Scholar 

  173. Wynn, H.P.: Introduction to Kiefer (1959) Optimum Experimental Designs. In Breakthroughs in Statistics, pp. 395–399. Springer, New York (1992)

    Google Scholar 

  174. Xu, L., Yu, B., Liu, W.: The distributionally robust optimization reformulation for stochastic complementarity problems. Abstr. Appl. Anal. 2014, Art. ID 469587, (2014)

    Google Scholar 

  175. Žáčková, J.: On minimax solutions of stochastic linear programming problems. Časopis Pěst. Mat. 91, 423–430 (1966)

    MathSciNet  MATH  Google Scholar 

  176. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  177. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1-2, Ser. A), 167–198 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Owhadi .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Construction of \(\pi \odot \mathbb{D}\)

The below construction works when \(\mathcal{A}\subseteq \mathcal{G}\times \mathcal{M}(\mathcal{X})\) for some Polish subset \(\mathcal{G}\subset \mathcal{F}(\mathcal{X})\) and \(\mathcal{X}\) is Polish. Observe that since \(\mathcal{D}\) is metrizable, it follows from [4, Thm. 15.13], that, for any \(B \in \mathcal{B}(\mathcal{D})\), the evaluation νν(B), \(\nu \in \mathcal{M}(\mathcal{D})\), is measurable. Consequently, the measurability of \(\mathbb{D}\) implies that the map**

$$\displaystyle{\widehat{\mathbb{D}}: \mathcal{A}\times \mathcal{B}(\mathcal{D}) \rightarrow R}$$

defined by

$$\displaystyle{\widehat{\mathbb{D}}{\bigl ((f,\mu ),B\bigr )}:= \mathbb{D}(f,\mu )[B],\quad \text{for }(f,\mu ) \in \mathcal{A},B \in \mathcal{B}(\mathcal{D})}$$

is a transition function in the sense that, for fixed \((f,\mu ) \in \mathcal{A}\), \(\widehat{\mathbb{D}}{\bigl ((f,\mu ),\cdot \bigr )}\) is a probability measure, and, for fixed \(B \in \mathcal{B}(\mathcal{D})\), \(\widehat{\mathbb{D}}{\bigl (\cdot,B\bigr )}\) is Borel measurable. Therefore, by [18, Thm. 10.7.2], any \(\pi \in \mathcal{M}(\mathcal{A})\) defines a probability measure

$$\displaystyle{\pi \odot \mathbb{D} \in \mathcal{M}{\bigl (\mathcal{B}(\mathcal{A}) \times \mathcal{B}(\mathcal{D})\bigr )}}$$

through

(6.21)

where is the indicator function of the set A:

It is easy to see that π is the \(\mathcal{A}\)-marginal of \(\pi \odot \mathbb{D}\). Moreover, when \(\mathcal{X}\) is Polish, [4, Thm. 15.15] implies that \(\mathcal{M}(\mathcal{X})\) is Polish, and when \(\mathcal{G}\) is Polish, it follows that \(\mathcal{A}\subseteq \mathcal{G}\times \mathcal{M}(\mathcal{X})\) is second countable. Consequently, since \(\mathcal{D}\) is Suslin and hence second countable, it follows from [32, Prop. 4.1.7] that

$$\displaystyle{\mathcal{B}{\bigl (\mathcal{A}\times \mathcal{D}\bigr )} = \mathcal{B}(\mathcal{A}) \times \mathcal{B}(\mathcal{D})}$$

and hence \(\pi \odot \mathbb{D}\) is a probability measure on \(\mathcal{A}\times \mathcal{D}\). That is,

$$\displaystyle{\pi \odot \mathbb{D} \in \mathcal{M}(\mathcal{A}\times \mathcal{D}).}$$

Henceforth denote \(\pi \cdot \mathbb{D}\) the corresponding Bayes’ sampling distribution defined by the \(\mathcal{D}\)-marginal of \(\pi \odot \mathbb{D}\), and note that by (6.21), one has

$$\displaystyle{ \pi \cdot \mathbb{D}[B]:= \mathbb{E}_{(f,\mu )\sim \pi }\big[\mathbb{D}(f,\mu )[B]\big],\quad \text{for }B \in \mathcal{B}(\mathcal{D}). }$$

Since both \(\mathcal{D}\) and \(\mathcal{A}\) are Suslin, it follows that the product \(\mathcal{A}\times \mathcal{D}\) is Suslin. Consequently, [18, Cor. 10.4.6] asserts that regular conditional probabilities exist for any sub-σ-algebra of \(\mathcal{B}{\bigl (\mathcal{A}\times \mathcal{D}\bigr )}\). In particular, the product theorem of [18, Thm. 10.4.11] asserts that product regular conditional probabilities

$$\displaystyle{{\bigl (\pi \odot \mathbb{D}\bigr )}\vert _{d} \in \mathcal{M}(\mathcal{A}),\quad \text{for }d \in \mathcal{D}}$$

exist and that they are \(\pi \cdot \mathbb{D}\)-a.e. unique.

1.2 Proof of Theorem  2

If \(\pi ^{\dag }\cdot \mathbb{D}\) is not absolutely continuous with respect to \(\pi \cdot \mathbb{D}\), then there exists \(B \in \mathcal{B}(\mathcal{D})\) such that \((\pi \cdot \mathbb{D})[B] = 0\) and \((\pi ^{\dag }\cdot \mathbb{D})[B] > 0\). Let \(\theta \in \Theta (\pi )\). Define

$$\displaystyle{ \theta _{y}(d):=\theta (d)1_{B^{c}}(d) + y1_{B}(d) }$$
(6.22)

Then it is easy to see that if y is in the range of \(\Phi \), then \(\theta _{y} \in \Theta (\pi )\). Now observe that for \(y,z \in Image(\Phi )\),

$$\displaystyle{ \mathcal{E}(\theta _{y},\pi ^{\dag }) -\mathcal{E}(\theta _{ z},\pi ^{\dag }) = \mathbb{E}_{ (f,\mu,d)\sim \pi ^{\dag }\odot \mathbb{D}}\Bigg[1_{B}(d)\Big(V \big(y - \Phi (f,\mu )\big) - V \big(z - \Phi (f,\mu )\big)\Big)\Bigg] }$$

Hence, for V (x) = x 2, it holds true that

$$\displaystyle{ \mathcal{E}(\theta _{y},\pi ^{\dag }) -\mathcal{E}(\theta _{ z},\pi ^{\dag }) =\big [(y-\gamma )^{2} - (z-\gamma )^{2}\big](\pi ^{\dag }\cdot \mathbb{D})[B] }$$

with

$$\displaystyle{ \gamma:= \mathbb{E}_{\pi ^{\dag }\odot \mathbb{D}}[\Phi \vert D \in B] }$$

which proves

$$\displaystyle{ \begin{array}{rl} \sup _{\theta _{2}\in \Theta (\pi )}\mathcal{E}(\theta _{2},\pi ^{\dag })& -\inf _{\theta _{1}\in \Theta (\pi )}\mathcal{E}(\theta _{1},\pi ^{\dag }) \geq \sup _{B\in \mathcal{B}(\mathcal{D})\,:\,(\pi \cdot \mathbb{D})[B]=0,\,y,z\in Image(\Phi )} \\ & \!\!\!\Big[\big(y - \mathbb{E}_{\pi ^{\dag }\odot \mathbb{D}}[\Phi \vert D \in B]\big)^{2} -\big (z - \mathbb{E}_{\pi ^{\dag }\odot \mathbb{D}}[\Phi \vert D \in B]\big)^{2}\Big](\pi ^{\dag }\cdot \mathbb{D})[B], \end{array} }$$

and,

$$\displaystyle{ \begin{array}{rl} \!\!\sup _{\theta _{2}\in \Theta (\pi )}\mathcal{E}(\theta _{2},\pi ^{\dag })& -\!\inf _{\theta _{1}\in \Theta (\pi )}\!\mathcal{E}(\theta _{1},\pi ^{\dag })\! \leq \!\big (\mathcal{U}(\mathcal{A}) -\mathcal{L}(\mathcal{A})\big)^{2}\sup _{B\in \mathcal{B}(\mathcal{D})\,:\,(\pi \cdot \mathbb{D})[B]=0}(\pi ^{\dag }\cdot \,\mathbb{D})[B]. \end{array} }$$

To obtain the right hand side of (6.19) observe that (see for instance [29, Sec. 5]) there exists \(B^{{\ast}}\in \mathcal{B}(\mathcal{D})\) such that

$$\displaystyle{ (\pi ^{\dag }\cdot \mathbb{D})[B^{{\ast}}] =\sup _{ B\in \mathcal{B}(\mathcal{D})\,:\,(\pi \cdot \mathbb{D})[B]=0}(\pi ^{\dag }\cdot \mathbb{D})[B] }$$

and (since θ 2 = θ 1 on the complement of B )

$$\displaystyle{ \begin{array}{rl} &\sup _{\theta _{1},\theta _{2}\in \Theta (\pi )}\big(\mathcal{E}(\theta _{2},\pi ^{\dag }) -\mathcal{E}(\theta _{1},\pi ^{\dag })\big) \\ &\qquad =\sup _{\theta _{1},\theta _{2}\in \Theta (\pi )}\mathbb{E}_{(f,\mu,d)\sim \pi ^{\dag }\odot \mathbb{D}}\Bigg[1_{B^{{\ast}}}(d)\Big(V \big(\theta _{2} - \Phi (f,\mu )\big) - V \big(\theta _{1} - \Phi (f,\mu )\big)\Big)\Bigg].\end{array} }$$

We conclude by observing that for V (x) = x 2,

$$\displaystyle{ \sup _{\theta _{1},\theta _{2}\in \Theta (\pi )}\Big(V \big(\theta _{2} - \Phi (f,\mu )\big) - V \big(\theta _{1} - \Phi (f,\mu )\big)\Big) \leq \big (\mathcal{U}(\mathcal{A}) -\mathcal{L}(\mathcal{A})\big)^{2}. }$$

1.3 Conditional Expectation as an Orthogonal Projection

It easily follows from Tonelli’s Theorem that

$$\displaystyle{ \mathbb{E}_{\pi \cdot \mathbb{D}}[h^{2}] = \mathbb{E}_{\pi \odot \mathbb{D}}[h^{2}] = \mathbb{E}_{ (f,\mu )\sim \pi }\mathbb{E}_{\mathbb{D}(f,\mu )}[h^{2}]. }$$

By considering the sub σ-algebra \(\mathcal{A}\times \mathcal{B}(\mathcal{D}) \subset \mathcal{B}(\mathcal{A}\times \mathcal{D}) = \mathcal{B}(\mathcal{A}) \times \mathcal{B}(\mathcal{D})\), it follows from, e.g., Theorem  10.2.9 of [32], that \(L_{\pi \cdot \mathbb{D}}^{2}(\mathcal{D})\) is a closed Hilbert subspace of the Hilbert space \(L_{\pi \odot \mathbb{D}}^{2}(\mathcal{A}\times \mathcal{D})\) and the conditional expectation of \(\Phi \) given the random variable D is the orthogonal projection from \(L_{\pi \odot \mathbb{D}}^{2}(\mathcal{A}\times \mathcal{D})\) to \(L_{\pi \cdot \mathbb{D}}^{2}(\mathcal{D})\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Owhadi, H., Scovel, C. (2017). Toward Machine Wald. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_3

Download citation

Publish with us

Policies and ethics

Navigation