Bioactive Compounds and Biological Activities of Arum L.

  • Living reference work entry
  • First Online:
Bioactive Compounds in the Storage Organs of Plants

Abstract

The genus Arum L. consists of 29 species of tuberous plants occurring in the temperate and Mediterranean parts of the Old World. The range of distribution of the genus expands from the Azores to western China and from Sweden to North Africa. It is a challenge sometimes to distinguish the species. From vegetative characters, arums are in general rather similar in appearance and exhibit a high plasticity. While conforming to the same inflorescence architecture, they display a wide range of discriminant floral characters (type of florets, size, shape, or color). This chapter summarizes the traditional use of Arum species for both food and medicinal purposes, as well as biologically active compounds and pharmacological activities. According to ethnobotanical data, the most frequent traditional medicinal use of several Arum species is to cure hemorrhoids. The storage organs contain carbohydrates, proteins, lectins (carbohydrate-binding proteins), fatty acids, etc., but in general, the genus Arum is poorly studied regarding phytochemicals. Biologically active compounds identified in various parts of Arum species include phenolic compounds, terpenoids, alkaloids, etc. Various extracts from these plants have analgesic, antioxidant, antimicrobial, antifungal, anti-inflammatory, antidiabetic, anti-obesity, and anticancer properties, cardiovascular protective effects, and immune-modulating activity. But Arum species contain raphides of non-soluble calcium oxalate and other toxic compounds and should be used with caution. These plants possess high medicinal potential and deserve further scientific research attention. At the same time, appropriate cultivation techniques need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boyce P (1993) The genus Arum. A Kew Magazine monograph. Royal Botanic Gardens

    Google Scholar 

  2. Boyce PC (2006) Arum–a decade of change. Aroideana 29:132–137

    Google Scholar 

  3. Lobin W, Neumann M, Bogner J, Boyce PC (2007) A new Arum species (Areae, Araceae) from NE Turkey and Georgia. Willdenowia 37(2):445–449

    Article  Google Scholar 

  4. Gibernau M, Macquart D, Przetak G (2004) Pollination in the genus Arum – a review. Aroideana 27:148–166

    Google Scholar 

  5. Kakizaki Y, Moore AL, Ito K (2012) Different molecular bases underlie the mitochondrial respiratory activity in the homoeothermic spadices of Symplocarpus renifolius and the transiently thermogenic appendices of Arum maculatum. Biochem J 445(2):237–246

    Article  CAS  PubMed  Google Scholar 

  6. Kaushal P, Kumar V, Sharma H (2015) Utilization of taro (Colocasia esculenta): a review. J Food Sci Technol 52:27–40

    Article  CAS  Google Scholar 

  7. **n J, Cui H, Xu Z (2022) Advances on cultivation modes of Amorphophallus konjac in China. J Agric For 12(1):65–69

    Google Scholar 

  8. Culpeper N (1975) 1652. The Herbal: Culpeper’s Complete Herbal

    Google Scholar 

  9. María de Cortes Sánchez M, Javier T (2016) Nutritional ethnobotany in Europe: from emergency foods to healthy folk cuisines and contemporary foraging trends. Mediterranean wild edible plants: ethnobotany and food composition tables: 33–56

    Google Scholar 

  10. Ozturk M, Altay V, Gucel S, Altundag E (2017) Plant diversity of the drylands in Southeastern Anatolia-Turkey: role in human health and food security. CABI Wallingford, UK, pp 83–124

    Google Scholar 

  11. Bussmann RW, Batsatsashvili K, Kikvidze Z, Paniagua-Zambrana NY, Khutsishvili M, Maisaia I et al (2019) Arum italicum subsp. albispathum (Steven ex Ledeb.) Prime Arum maculatum L. Araceae. Ethnobotany of the Mountain Regions of Far Eastern Europe: Ural, Northern Caucasus, Turkey, and Iran:1–6

    Google Scholar 

  12. Ekin İ (2022) Proximate and fatty acid compositions of four therapeutic and nutritional plants for two consecutive years. Proc Natl Acad Sci India Sect B Biol Sci 92(4):929–937

    Article  CAS  Google Scholar 

  13. Tofighi Z, Shahpar Y, Taheri A, Tavakoli S, Asatouri R, Eftekhari M et al (2021) Identification of isoflavonoids in antioxidant effective fraction of Arum rupicola Boiss. leaves. J Med Plants 20(79):14–23

    Article  Google Scholar 

  14. Ivanova T, Marchev A, Chervenkov M, Bosseva Y, Georgiev M, Kozuharova E et al (2023) Catching the green – diversity of ruderal spring plants traditionally consumed in Bulgaria and their potential benefit for human health. Diversity 15(3):435. https://doi.org/10.3390/d15030435

    Article  CAS  Google Scholar 

  15. Ceylan F, Sahingoz SA (2022) Using ethnobotanical plants in food preparation: Cuckoo pint (Arum maculatum L.). Int J Gastron Food Sci 29:100529

    Article  Google Scholar 

  16. Bussmann RW, Batsatsashvili K, Kikvidze Z, Paniagua-Zambrana NY, Khutsishvili M, Maisaia I et al (2020) Arum italicum subsp. albispathum. Ethnobotany of the mountain regions of far Eastern Europe: Ural, Northern Caucasus, Turkey, and Iran. https://doi.org/10.1007/978-3-030-28940-9_17

  17. Salik S, Alpinar K, Imre S (2002) Fatty acid composition of the seed oil of Arum italicum Miller. J Food Lipids 9(2):95–103

    Article  Google Scholar 

  18. Dalby A (2003) Language in danger: the loss of linguistic diversity and the threat to our future. Columbia University Press

    Google Scholar 

  19. Rivera D, Obon C, Heinrich M, Inocencio C, Verde A, Fajardo J (2006) Gathered Mediterranean food plants–ethnobotanical investigations and historical development. Local Mediterranean Food Plants Nutraceuticals 59:18–74

    Article  Google Scholar 

  20. Alaca K, Okumus E, Bakkalbasi E, Javidipour I (2021) Phytochemicals and antioxidant activities of twelve edible wild plants from Eastern Anatolia, Turkey. Food Sci Technol 42. https://doi.org/10.1590/fst.18021

  21. Demir E, Turfan N, Özer H, Üstün NŞ, Pekşen A (2020) Nutrient and bioactive substance contents of edible plants grown naturally in Salipazari (Samsun). Acta Sci Pol Hortorum Cultus 19(1):151–160

    Article  Google Scholar 

  22. Allen AK (1995) Purification and characterization of an N-acetyllactosamine-specific lectin from tubers of Arum maculatum. Biochim Biophys Acta Gen Subj 1244(1):129–132

    Article  Google Scholar 

  23. Majumder P, Mondal HA, Das S (2005) Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem 53(17):6725–6729

    Article  CAS  PubMed  Google Scholar 

  24. Mladenov IV, Haralambieva IH, Iankov ID, Mitov IG (2002) Characterisation of 20-kDa lectin-spermagglutinin from Arum maculatum that prevents Chlamydia pneumoniae infection of L-929 fibroblast cells. FEMS Microbiol Immunol 32(3):249–254

    Article  CAS  Google Scholar 

  25. Alencar VBM, Alencar NMN, Assreuy AMS, Mota ML, Brito GAC, Aragão KS et al (2005) Pro-inflammatory effect of Arum maculatum lectin and role of resident cells. Int J Biochem Cell Biol 37(9):1805–1814. https://doi.org/10.1016/j.biocel.2005.02.027

    Article  CAS  PubMed  Google Scholar 

  26. Van Damme EJ, Goossens K, Smeets K, Van Leuven F, Verhaert P, Peumans WJ (1995) The major tuber storage protein of araceae species is a lectin (characterization and molecular cloning of the lectin from Arum maculatum L.). Plant Physiol 107(4):1147–1158

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zargoun AH, Mohammed A, Abdelshafeek KA, Ibansharrada AA, Alomari AA (2020) GC/MS analysis of lipid constituents and antimicrobial activity of Arum cyrinaicum extracts. Egypt J Chem 63(12):4889–4910

    Google Scholar 

  28. Yabalak E (2018) Radical scavenging activity and chemical composition of methanolic extract from Arum dioscoridis Sm. var. dioscoridis and determination of its mineral and trace elements. J Turk Chem Soc Sect A Chem 5(1):205–218

    Google Scholar 

  29. Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arráez-Román D, Segura-Carretero A (2015) Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Res Int 70:74–86

    Article  CAS  Google Scholar 

  30. Dring JV, Kite G, Nash R, Reynolds T (1995) Chemicals in aroids: a survey, including new results for polyhydroxy alkaloids and alkylresorcinols. Bot J Linn Soc 117(1):1–12

    Article  Google Scholar 

  31. Stahl E, Kaltenbach U (1970) The basic components of the cuckoopint (Arum maculatum L.) (No. TRANS-2722)

    Google Scholar 

  32. Djurdjević L, Popović Z, Mitrović M, Pavlović P, Jarić S, Oberan L et al (2008) Dynamics of bioavailable rhizosphere soil phenolics and photosynthesis of Arum maculatum L. in a lime-beech forest. Flora: Morphol Distrib Funct Ecol Plants 203(7):590–601

    Article  Google Scholar 

  33. Christie WW (2003) 13-Phenyltridec-9-enoic and 15-phenylpentadec-9-enoic acids in Arum maculatum seed oil. Eur J Lipid Sci 105(12):779–780

    Article  CAS  Google Scholar 

  34. Greca MD, Fiorentino A, Molinaro A, Monaco P, Previtera L (1993) Steroidal 5, 6-epoxides from Arum italicum. Nat Prod Lett 2(1):27–32

    Article  Google Scholar 

  35. Harrison AP, Bartels E (2006) A modern appraisal of ancient Etruscan herbal practices. Am J Pharmacol Toxicol 1(2):21–24

    Google Scholar 

  36. Della Greca M, Molinaro A, Monaco P, Previtera L (1994) Lignans from Arum italicum. Phytochemistry 35(3):777–779

    Article  CAS  Google Scholar 

  37. El-Desouky SK, Ryu SY, Kim Y-K (2007) Piperazirum, a novel bioactive alkaloid from Arum palaestinum Boiss. Tetrahedron Lett 48(23):4015–4017. https://doi.org/10.1016/j.tetlet.2007.04.032

    Article  CAS  Google Scholar 

  38. El-Desouky SK, Kim KH, Ryu SY, Eweas AF, Gamal-Eldeen AM, Kim Y-K (2007) A new pyrrole alkaloid isolated from Arum palaestinum Boiss. and its biological activities. Arch Pharm Res 30:927–931

    Article  CAS  PubMed  Google Scholar 

  39. Cole C, Burgoyne T, Lee A, Stehno-Bittel L, Zaid G (2015) Arum Palaestinum with isovanillin, linolenic acid and β-sitosterol inhibits prostate cancer spheroids and reduces the growth rate of prostate tumors in mice. BMC Complement Altern Med 15(1):1–8

    CAS  Google Scholar 

  40. Farid MM, Hussein SR, Ibrahim LF, El Desouky MA, Elsayed AM, El Oqlah AA et al (2015) Cytotoxic activity and phytochemical analysis of Arum palaestinum Boiss. Asian Pac J Trop Med 5(11):944–947

    Article  CAS  Google Scholar 

  41. Farid M, Hussein S, Trendafilova A, Marzouk M, El Oqlah A, Saker M (2017) Phytochemical constituents of the butanol fraction of Arum palaestinum Boiss.: cytotoxic and antiviral screening. J Mater Environ Sci 8(7):2585–2591

    CAS  Google Scholar 

  42. Afifi FU, Khalil E, Abdalla S (1999) Effect of isoorientin isolated from Arum palaestinum on uterine smooth muscle of rats and guinea pigs. J Ethnopharmacol 65(2):173–177

    Article  CAS  PubMed  Google Scholar 

  43. Mohieddin AA, Khalil A-K, Abdullah K, Saleh T (2017) Preliminary study and phytochemical screening of Arum dioscorides Sibth. in Syria. Int J Pharmacognosy Phytochem Res 9(2):165–173

    Google Scholar 

  44. Jaradat N, Abualhasan M (2016) Comparison of phytoconstituents, total phenol contents and free radical scavenging capacities between four Arum species from Jerusalem and Bethlehem. Pharm Sci 22(2):120–125. https://doi.org/10.15171/ps.2016.19

    Article  Google Scholar 

  45. Mahomoodally MF, Zengin G, Roumita S-S, Caprioli G, Mustafa AM, Piatti D et al (2023) Chemical characterization and multidirectional biological effects of different solvent extracts of Arum elongatum: in vitro and in silico approaches. Chem Biodivers:e202201181. https://doi.org/10.1002/cbdv.202201181

  46. Jaber HM, Al-Hamaideh KD, Al-Daghistani HI, Amer NH, Nassar MN, Al-Latif A et al (2020) Antibacterial activity and chemical composition of Arum hygrophilum Boiss crude extracts. Jordan J Biol Sci 13(2):159–164

    CAS  Google Scholar 

  47. Afifi FU, Kasabri V, Litescu S, Abaza IF, Tawaha K (2017) Phytochemical and biological evaluations of Arum hygrophilum boiss. (Araceae). Pharmacogn Mag 13(50):275–280

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kozuharova E, Naychov Z, Kochmarov V, Benbassat N, Gibernau M, Momekov G (2020) The potential of Arum spp. as a cure for hemorrhoids: chemistry, bioactivities, and application. Adv Tradit Med 20(2):133–141

    Article  CAS  Google Scholar 

  49. Hatim MJ, Khawla DA-H, Hala IA-D, Nabil HA, Moayyad NN, Saleh M et al (2020) Antibacterial activity and chemical composition of Arum hygrophilum Boiss crude extracts. Jordan J Biol Sci 13:159–164

    Google Scholar 

  50. Bonora A, Pancaldi S, Gualandri R, Fasulo MP (2000) Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening. J Exp Bot 51(346):873–884

    Article  CAS  PubMed  Google Scholar 

  51. Ferroni L, Pantaleoni L, Baldisserotto C, Aro E-M, Pancaldi S (2013) Low photosynthetic activity is linked to changes in the organization of photosystem II in the fruit of Arum italicum. Plant Physiol Biochem 63:140–150

    Article  CAS  PubMed  Google Scholar 

  52. Diaz A, Kite G (2002) A comparison of the pollination ecology of Arum maculatum and A. italicum in England. Watsonia 24(2):171–182

    Google Scholar 

  53. Leguet A, Gibernau M, Shintu L, Caldarelli S, Moja S, Baudino S et al (2014) Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids. Sci Nat 101:623–635

    Article  CAS  Google Scholar 

  54. Azab A (2017) Arum: a plant genus with great medicinal potential. Eur Chem Bull 6(2):59–68

    Article  CAS  Google Scholar 

  55. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB et al (2022) Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X:100217. https://doi.org/10.1016/j.fochx.2022.100217

    Article  CAS  Google Scholar 

  56. Cheng S-S, Wu C-L, Chang H-T, Kao Y-T, Chang S-T (2004) Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. J Chem Ecol 30:1957–1967

    Article  CAS  PubMed  Google Scholar 

  57. Sun Y, Wu S, Fu X, Lai C, Guo D (2022) De novo biosynthesis of τ-cadinol in engineered Escherichia coli. Bioresour Bioprocess 9(1):1–8

    Article  CAS  Google Scholar 

  58. Aldehyde L. Summary of evaluations performed by the Joint FAO/WHO Expert Committee on food additives, COMPENDIUM ADDENDUM 11/FNP 52 Add.11/94 2003

    Google Scholar 

  59. Chen S, Lu Y, Wang W, Hu Y, Wang J, Tang S et al (2022) Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.960558

  60. Lalko J, Lapczynski AA, McGinty D, Bhatia SP, Letizia CS, Api AM (2007) Fragrance material review on trans-β-Ionone. Food Chem Toxicol 45(Suppl 1):S248–S250. https://doi.org/10.1016/j.fct.2007.09.011

    Article  PubMed  Google Scholar 

  61. González-Verdejo CI, Obrero Á, Román B, Gómez P (2015) Expression profile of carotenoid cleavage dioxygenase genes in summer squash (Cucurbita pepo L.). Plant Foods Hum Nutr 70(2):200–206

    Article  PubMed  Google Scholar 

  62. Paparella A, Shaltiel-Harpaza L, Ibdah M (2021) β-Ionone: Its occurrence and biological function and metabolic engineering. Plan Theory 10(4):754. https://doi.org/10.3390/plants10040754

    Article  CAS  Google Scholar 

  63. Avoseh ON, Mtunzi FM, Ogunwande IA, Ascrizzi R, Guido F (2021) Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models. J Ethnopharmacol 268:113676. https://doi.org/10.1016/j.jep.2020.113676

    Article  CAS  PubMed  Google Scholar 

  64. Wei G, Kong L, Zhang J, Ma C, Wu X, Li X et al (2016) Essential oil composition and antibacterial activity of Lindera nacusua (D. Don) Merr. Nat Prod Res 30(23):2704–2706

    Article  CAS  PubMed  Google Scholar 

  65. EU Food Improvement Agents CIRE: No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1999/217/EC Text with EEA relevance (2023). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012R0872. Accessed 28 May 2023

  66. Company PM (2023.): https://www.ulprospector.com/en/na/Food/Detail/16153/423777/Methyl-Palmitate. Accessed.

  67. Al-Qura'n S (2005) Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon 46(2):119–129

    Article  CAS  PubMed  Google Scholar 

  68. Kianinia S, Farjam MH (2018) Chemical and biological evolution of essential oil of Arum maculatum. Iran J Sci Technol Trans A: Sci 42:395–399

    Article  Google Scholar 

  69. Murru E, Manca C, Carta G, Banni S (2022) Impact of dietary palmitic acid on lipid metabolism. Front Nutr 9. https://doi.org/10.3389/fnut.2022.861664

  70. Bobe G, Zhang Z, Kopp R, Garzotto M, Shannon J, Takata Y (2020) Phytol and its metabolites phytanic and pristanic acids for risk of cancer: current evidence and future directions. Eur J Cancer Prev 29(2):191–200

    Article  PubMed  PubMed Central  Google Scholar 

  71. Comlekcioglu N, Çolak S, Aygan A (2021) A study on the bioactıvıty of plant extracts obtained from Arum maculatum leaves by different extractıon techniques. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam 16(1–2):41–46

    Article  Google Scholar 

  72. Telle-Hansen VH, Gaundal L, Myhrstad MC (2019) Polyunsaturated fatty acids and glycemic control in type 2 diabetes. Nutrients 11(5):1067. https://doi.org/10.3390/nu11051067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Janick J, Stolarczyk J (2012) Ancient Greek illustrated Dioscoridean herbals: origins and impact of the Juliana Anicia Codex and the Codex Neopolitanus. Not Bot Horti Agrobot Cluj-Napoca 40(1):9–17

    Article  Google Scholar 

  74. Adams M, Alther W, Kessler M, Kluge M, Hamburger M (2011) Malaria in the renaissance: remedies from European herbals from the 16th and 17th century. J Ethnopharmacol 133(2):278–288

    Article  PubMed  Google Scholar 

  75. Kochmarov V, Kozuharova E, Naychov Z, Momekov G, Mincheva I (2015) Ethnobotany and ethnopharmacology of Arum maculatum L.(Araceae) in Bulgaria with an emphasis on its effect against haemorrhoids. Int J Pharm Chem Biol Sci 5(2):394–402

    Google Scholar 

  76. Ivancheva S, Stantcheva B (2000) Ethnobotanical inventory of medicinal plants in Bulgaria. J Ethnopharmacol 69(2):165–172

    Article  CAS  PubMed  Google Scholar 

  77. Uzun E, Sariyar G, Adsersen A, Karakoc B, Ötük G, Oktayoglu E et al (2004) Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. J Ethnopharmacol 95(2–3):287–296

    Article  PubMed  Google Scholar 

  78. Kültür Ş (2007) Medicinal plants used in Kırklareli province (Turkey). J Ethnopharmacol 111(2):341–364

    Article  PubMed  Google Scholar 

  79. Colombo ML, Assisi F, Della Puppa T, Moro P, Sesana FM, Bissoli M et al (2009) Exposures and intoxications after herb-induced poisoning: a retrospective hospital-based study. J Pharm Sci Res 2(2):123–136

    Google Scholar 

  80. Vodenicharov D, Petrov A (2001) Poisonous plants and the poisoning with them. Pensoft Publ, Sofia/Moscow

    Google Scholar 

  81. Everest A, Ozturk E (2005) Focusing on the ethnobotanical uses of plants in Mersin and Adana provinces (Turkey). J Ethnobiol Ethnomed 1:1–6

    Article  Google Scholar 

  82. Tetik F, Civelek S, Cakilcioglu U (2013) Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol 146(1):331–346

    Article  PubMed  Google Scholar 

  83. Polat R, Cakilcioglu U, Satıl F (2013) Traditional uses of medicinal plants in Solhan (Bingöl—Turkey). J Ethnopharmacol 148(3):951–963

    Article  CAS  PubMed  Google Scholar 

  84. Aghili MaHuiMaHd‘l‘Srz (1772) Qarabadin-e-Kabir, Ostad Allah Qoli khan Qajar (in Persian). Iran, Tehran

    Google Scholar 

  85. Aghili MaHuiMaHd‘l‘Srz (1970) Qarabadin-e Kabir (Great Pharmacopoeia). Institute of Medical History, Islamic Medicine and Complementary Medicine, Iran, Tehran

    Google Scholar 

  86. Aghili MaHuiMaHd‘l‘Srz (2009) Makhzan-al-Advia (In Persian)Makhzan-al-Advia (In Persian). Tehran University of Medical Sciences, Iran, Tehran

    Google Scholar 

  87. Pieroni A, Quave CL (2005) Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol 101(1–3):258–270

    Article  PubMed  Google Scholar 

  88. Leto C, Tuttolomondo T, La Bella S, Licata M (2013) Ethnobotanical study in the Madonie Regional Park (Central Sicily, Italy) – medicinal use of wild shrub and herbaceous plant species. J Ethnopharmacol 146(1):90–112

    Article  PubMed  Google Scholar 

  89. Tuttolomondo T, Licata M, Leto C, Savo V, Bonsangue G, Gargano ML et al (2014) Ethnobotanical investigation on wild medicinal plants in the Monti Sicani Regional Park (Sicily, Italy). J Ethnopharmacol 153(3):568–586

    Article  PubMed  Google Scholar 

  90. Medicinal plant act. State gazette vol. 29, 07 Apr 2000. http://lex.bg/laws/ldoc/21349160 Accessed 96 12 Nov 2013

  91. Nikolov S (2006) Specialized Encyclopedia of medicinal plants in Bulgaria, Bulgarian encyclopedia (Bulgarian language). Bulgarian Academy of Sciences, Faculty of Pharmacy MU, Publishing House “Trud”, Bulgaria, Sofia

    Google Scholar 

  92. Yeşilada E (2002) Biodiversity in Turkish folk medicine. Springer, New York, pp 119–135

    Google Scholar 

  93. Tümen G, Malyer H, Başer KHC, Öz Aydın S (2006) Plants used in Anatolia for wound healing. In: Proceedings of the IVth international congress of ethnobotany (ICEB 2005) 217:221

    Google Scholar 

  94. Gürhan G, Nurten E (2004) Halk arasında hemoroit tedavisinde kullanılan bitkiler-I. Hacet Univ J Fac Pharm 1:37–60. https://doi.org/10.1016/j.ijgfs.2022.100529

    Article  Google Scholar 

  95. Tuzlacı E, Aymaz PE (2001) Turkish folk medicinal plants, part IV: Gönen (Balıkesir). Fitoterapia 72(4):323–343

    Article  PubMed  Google Scholar 

  96. Uguzlar H, Maltas E, Yildiz S (2012) Screening of phytochemicals and antioxidant activity of Arum dioscoridis seeds. J Food Biochem 36(3):285–291

    Article  CAS  Google Scholar 

  97. Abbasi N, Karkondi VR, Asadollahi K, Tahmasebi M, Ghobad A, Taherikalani M et al (2014) Analgesic effects of Arum maculatum plant extract in rats compared to other routine analgesics. J Med Plant Res 8(31):1025–1030

    Article  Google Scholar 

  98. Safari E, Amiri M, Bahador A, Amiri M, Esmaeili D (2014) The study of antibacterial effects of alcoholic extracts of Arum maculatum, Allium hirtifolium and Teucrium polium against nosocomial resistance bacteria. Int J Curr Microbiol App Sci 3(2):601–605

    Google Scholar 

  99. Çolak F, Savaroğlu F, İlhan S (2009) Antibacterial and antifungal activities of Arum maculatum L. leaves extracts. J Appl Biol Sci 3(3):13–16

    Google Scholar 

  100. Nabeel M, Abderrahman S, Papini A (2008) Cytogenetic effect of Arum maculatum extract on the bone marrow cells of mice. Caryologia 61(4):383–387

    Article  Google Scholar 

  101. Turker H, Yıldırım AB (2015) Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections. Biotechnol Biotechnol Equip 29(2):281–288

    Article  PubMed  PubMed Central  Google Scholar 

  102. Diab-Assaf M, Taleb R, Shebaby W, Mansour A, Moussa C, Daher C et al (2012) Antioxidant and anticancer activities of methanolic, ethyl acetate and chloroform extracts of Arum Palaestinum. Planta Med 78(11):PI389. https://doi.org/10.1055/s-0032-1321076

    Article  Google Scholar 

  103. Sawaftah A (2013) In vitro evaluation of the apoptotic and antimitotic (cytostatic) effects of Arum palaestinum and Peganum harmala. An-Najah National University, Faculty of Graduate Studies

    Google Scholar 

  104. Ali-Shtayeh MS, Jamous RM, Al-Shafie' JH, Elgharabah WA, Kherfan FA, Qarariah KH et al (2008) Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): a comparative study. J Ethnobiol Ethnomed 4:1–13

    Article  Google Scholar 

  105. Ali-Shtayeh MS, Yaniv Z, Mahajna J (2000) Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol 73(1–2):221–232

    Article  CAS  PubMed  Google Scholar 

  106. Janakat S, Al-Thnaibat O (2008) Antilipoperoxidative effect of three edible plants extracts: Viscum album, Arum dioscoridis and Eminium spiculatum. J Food Qual 31(1):1–12

    Article  Google Scholar 

  107. Yenil N, Yemis F, Guler A (2019) In different maturation stages of Arum italicum Miler (Araceae) fruits, determination of the ellagic acid, hesperidin, resvaratrol and quercetin quantities by HPLC-DAD. Fresenius Environ Bull 28(3):2035–2040

    CAS  Google Scholar 

  108. Zeynep A, Demir Ç, Alkan O, Zehra C, Bülent A (2021) LC–MS/MS and RP–HPLC–UV analysis and antioxidant activities of Arum italicum Miller edible and nonedible tuber parts. J Anatol Environ Anim Sci 6(3):294–301

    Google Scholar 

  109. Kochmarov V, Marinov L, Kozuharova E, Hristova-Avakumova N, Hadjimitova V, Traykov T et al (2020) Exploration of collagenase, cyclooxigenases, angiogenesis and free radical processes as the putative pharmacological targets of Arum maculatum L. Biotechnol Biotechnol Equip 34(1):126–134

    Article  CAS  Google Scholar 

  110. Ağalar H, Ciftci G, Göger F, Kirimer N (2018) Activity guided fractionation of Arum italicum miller tubers and the LC/MS-MS profiles. Rec Nat Prod 12(1)

    Google Scholar 

  111. Necati Ö, Güneş I (2019) Streptozotosin kaynaklı diyabetik sıçanlarda Arum rupicola'nın in vivo antioksidan potansiyeli. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8(3):866–874

    Article  Google Scholar 

  112. Ağaoğlu AB, Kadir G, İspiroğlu M, Bahar AY, Tolun Fİ, Kantarçeken B (2022) Intestinal anti-Inflammatory and anti-Oxidant activity of the aqueous extract from Arum dioscoridis in acetic acid induced colitis in rats. Kahramanmaraş Sütçü İmam Üniversitesi Tıp Fakültesi Dergisi 17(1):172–181

    Article  Google Scholar 

  113. Ben Ramadan L, Zwawi A, Almaghour H, Saad M, Alfalah A, Ben Amer L et al (2012) Toxicity and antioxidant of Arum cyrenaicum Hurby. Egypt J Forensic Sci Appl Toxicol 12(2):1–17

    Google Scholar 

  114. Uguzlar H, Maltas E, Yildiz S (2016) Antioxidant activity and fatty acid compositions of Arum dioscoridis extracts. Biosci Biotechnol Res Asia 8(1):75–82

    Article  Google Scholar 

  115. Karahan F, Kulak M, Urlu E, Gözüacik HG, Böyümez T, Şekeroğlu N et al (2015) Total phenolic content, ferric reducing and DPPH scavenging activity of Arum dioscoridis. Nat Prod Res 29(17):1678–1683

    Article  CAS  PubMed  Google Scholar 

  116. Yusuf A (2018) Arum elongatum Steven Ekstraktlarının Fenolik Madde Miktarı ve Biyolojik Aktivitelerinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 7(2):370–379

    Article  Google Scholar 

  117. Alallan L (2021) Study of the chemicals, phenols, flavonoids, and antioxidants content of the Syrian Arum hygrophilum Boiss. Plant. Int J Herb Med 9(6):62–66

    Google Scholar 

  118. Alragbi EBM. Antibacterial and antioxidant activities of essential oils and crude extract fractions of Arum hygrophilum Boiss (Araceae) from Jordan. Biological Sciences: Yarmouk University

    Google Scholar 

  119. Meydan I, Seckin H, Burhan H, Gür T, Tanhaei B, Sen F (2022) Arum italicum mediated silver nanoparticles: synthesis and investigation of some biochemical parameters. Environ Res 204:112347

    Article  CAS  PubMed  Google Scholar 

  120. Farahmandfar R, Esmaeilzadeh Kenari R, Asnaashari M, Shahrampour D, Bakhshandeh T (2019) Bioactive compounds, antioxidant and antimicrobial activities of Arum maculatum leaves extracts as affected by various solvents and extraction methods. Food Sci Nutr 7(2):465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Erbil N, Arslan M, Murathan ZT (2018) Antioxidant, antimicrobial, and antimutagenic effects and biochemical contents of Arum maculatum L. That is a medical plant from turkish flora. Fresenius Environ Bull 27:8709

    CAS  Google Scholar 

  122. Dayisoylu KS (2010) Changes of antioxidant activity in different forms and meal of Arum maculatum in Kahramanmaras province from Turkey. Asian J Chem 22(8):6595

    CAS  Google Scholar 

  123. Bilirİ G, Sariahmet M, Ekinci D (2023) Purification and characterization of glutathione reductase enzyme from Arum maculatum Leaf. BSJ Agri:11–12

    Google Scholar 

  124. Kurt BZ, Gazioğlu I, Sevgi E, Sönmez F (2018) Anticholinesterase, antioxidant, antiaflatoxigenic activities of ten edible wild plants from Ordu area, Turkey. Iran J Pharm Res 17(3):1047–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Al-Shmgani HS, Kadri ZHM, Al-Halbosiy MM, Dewir YH (2019) Phytochemical analysis, cytotoxicity and antioxidant activity of cuckoo pint (Arum maculatum) leaf extract. Acta Biol Szeged 63(2):119–124

    Article  Google Scholar 

  126. Husein AI, Ali-Shtayeh MS, Jondi WJ, Zatar NA-A, Abu-Reidah IM, Jamous RM (2014) In vitro antioxidant and antitumor activities of six selected plants used in the traditional Arabic Palestinian herbal medicine. Pharm Biol 52(10):1249–1255

    Article  CAS  PubMed  Google Scholar 

  127. Alsaadi A, Marwan A, Myadmah A, Kheir M (2021) GC-MS analysis and antioxidant activity of Arum Palaestinum. Chemical Engineering, An-Najah National University

    Google Scholar 

  128. Kivanc MR, Türkoglu V (2019) Investigation of the effects of natural compounds isolated from Arum rupicola var. rupicola on glutathione reductase enzyme purified from bovine liver. Biomed Chromatogr 33(8):e4560

    Article  PubMed  Google Scholar 

  129. Kivanc M (2022) Investigation of biological and chemical effects of extracts from Arum rupicola Boiss. var. rupicola. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 11(2):574–585

    Article  Google Scholar 

  130. Javidmehr A, Abbaszadeh S, Kian M, Hamedeyazdan S, Soraya H (2021) Hydroalcoholic extract of Arum orientale ameliorates myocardial infarction induced by isoproterenol in rats. J Res Pharm 25(1):80–88

    CAS  Google Scholar 

  131. Ibrahim ZH (2021) Anti-obesity effects of Arum maculatum, Nasturtium officinale plant extracts and exercise in high fat diet-induced obese rats. Kurd J Appl Res:190–198

    Google Scholar 

  132. Al-Daghistani HI, Abu-Niaaj LF, Bustanji Y, Al-Hamaideh KD, Al-Salamat H, Nassar M et al (2021) Antibacterial and cytotoxicity evaluation of Arum hygrophilum Bioss. Eur Rev Med Pharmacol 25(23):7306–7316

    CAS  Google Scholar 

  133. Hacıoğlu M, Kulaksız B, Alpınar K, Hacıosmanoğlu E, Tan A (2021) In vitro antimicrobial, antibiofilm and cytotoxic activities of the extracts of Arum italicum Miller leaves. Farmacia

    Google Scholar 

  134. Soleimanipour S, Kian M, Hamedeyazdan S, Movahhedin N, Ghaderi F, Soraya H (2021) The effects of hydroalcoholic extract of Arum orientale on CLP-induced sepsis in rats. Pharm Sci 27(2):162–169. https://doi.org/10.34172/ps.2020.69

    Article  CAS  Google Scholar 

  135. Safari E, Amiri M, Bahador A, Amiri M, Esmaeili D (2014) The study of antibacterial effects of alcoholic extracts of Arum maculatum, Allium hirtifolium and Teucrium polium against nosocomial resistance bacteria. Int J Curr Microbiol Appl Sci 3(2):601–605

    Google Scholar 

  136. Kmail A, Jaradat N, Mansour B, Abu-Labdeh R, Zakarneh S, Abu-Farha S et al (2022) Phytochemical analysis, cytostatic, cytotoxic, and anti-inflammatory effects of Arum palaestinum, Ocimum basilicum, and Trigonella foenum-graecum in human monocytic cell line (THP-1)-derived macrophages. Eur J Integr Med 54:102159. https://doi.org/10.1016/j.eujim.2022.102159

    Article  Google Scholar 

  137. Qnais E, Bseiso Y, Wedyan M, Alkhateeb H (2017) Evaluation of analgesic activity of the methanol extract from the leaves of Arum palaestinum in mice and rats. Biomed Pharmacol J 10(3):1159–1166

    Article  Google Scholar 

  138. Jaspersen-Schib R, Theus L, Guirguis-Oeschger M, Gossweiler B, Meier-Abt P (1996) Serious plant poisonings in Switzerland 1966–1994. Case analysis from the Swiss toxicology information center. Schweiz Med Wochenschr 126(25):1085–1098

    CAS  PubMed  Google Scholar 

  139. Plenert B, Prasa D, Hentschel H, Deters M (2012) Plant exposures reported to the Poisons Information Centre Erfurt from 2001–2010. Planta Med 78(05):401–408

    Article  CAS  PubMed  Google Scholar 

  140. Dauncey E (2007) A guide to poisonous house and garden plants. Manson Publishing, London

    Google Scholar 

  141. Raju KP, Goel K, Anandhi D, Pandit VR, Surendar R, Sasikumar M (2018) Wild tuber poisoning: Arum maculatum–A rare case report. Int J Crit Illn Inj Sci 8(2):111–114

    Article  Google Scholar 

  142. Kozuharova E, Kochmarov V, Semerdjieva I, Mincheva I, Gibernau M (2018) Potential resource of wild populations of Arum maculatum L. (Araceae) in Bulgaria–a prospective medicinal plant. Comptes Rendus de l 'Academie Bulg des Sci 71(2):192–200

    Google Scholar 

  143. Kozuharova E, Kochmarov V, Kachaunova E, Espíndola A, Aleksandrov B, Mincheva I (2014) Distribution of Arum (Araceae) in Bulgaria. Flora Mediterr 24:51–62

    Article  Google Scholar 

Download references

Acknowledgments

Ekaterina Kozuharova was supported in this research by the European Union – NextGenerationEU – through the National Recovery and Resilience Plan of the Republic of Bulgaria, Project № BG-RRP-2.004-0004-C01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kozuharova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kozuharova, E. et al. (2023). Bioactive Compounds and Biological Activities of Arum L.. In: Murthy, H.N., Paek, K.Y., Park, SY. (eds) Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29006-0_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29006-0_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29006-0

  • Online ISBN: 978-3-031-29006-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation