Bioactive Compounds and Biological Activities of Taro (Colocasia esculenta (L.). Schott)

  • Living reference work entry
  • First Online:
Bioactive Compounds in the Storage Organs of Plants

Abstract

Plants are said to be the finest source of food and phytochemicals. Along with aerial plant components, subterranean tuberous, stems, and roots were often consumed for their phytochemical and nutritional worth. Colocasia esculenta (L.). Schott is an essential plant that is utilized for its nutritional and phytochemical properties. It is commonly called taro, which is very rich in plant secondary metabolites and their respective pharmacological properties. Taro is consumed by people worldwide and serves as a staple food in Asian and African countries, leading to its abundant production. Extensive studies has explored the nutritional composition of taro, which has been identified as a promising source of dietary fiber. Moreover, taro exhibits a wealth of minerals and phytochemicals, including phenols, flavonoids, and various derivatives, which contribute to its diverse pharmacological activities, such as antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and anticancer effects. This chapter provides a comprehensive overview of taro, encompassing its nutritional profile, phytochemistry, and numerous pharmacological properties. Additionally, it addresses the important aspects of biosafety in relation to taro consumption and highlights potential prospects for sustainable production of this remarkable tuber crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nwozo OS, Effiong EM, Aja PM, Awuchi CG (2023) Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. Int J Food Prop 26:359–388

    Article  CAS  Google Scholar 

  2. Krishnapriya TV, Suganthi A (2017) Biochemical and phytochemical analysis of Colocasia esculenta (L.) Schott tubers. Int J Res Pharm Sci 2:21–25

    Google Scholar 

  3. Kaushal P, Kumar V, Sharma HK (2015) Utilization of taro (Colocasia esculenta): a review. J Food Sci Technol 52:27–40

    Article  CAS  Google Scholar 

  4. SafoKantaka O (2004) In: Grubben GJH, Denton OA (eds) Colocasia esculenta (L.) Schott. Record from protabase. PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen

    Google Scholar 

  5. Chaïr H, Traore RE, Duval MF, Rivallan R, Mukherjee A, Aboagye LM, Van Rensburg WJ, Andrianavalona V, Pinheiro de Carvalho MA, Saborio F, Sri Prana M (2016) Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PLoS One 11:e0157712

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ubalua AO, Ewa F, Okeagu OD (2016) Potentials and challenges of sustainable taro (Colocasia esculenta) production in Nigeria. J Appl Biol Biotechnol 19:53–59

    Google Scholar 

  7. Quero-García J, Courtois B, Ivancic A, Letourmy P, Risterucci AM, Noyer JL, Feldmann P, Lebot V (2006) First genetic maps and QTL studies of yield traits of taro (Colocasia esculenta (L.) Schott). Euphytica 151:187–199

    Article  Google Scholar 

  8. Pereira FH, Puiatti M, Finger FL (2006) Ornamental potential of taro [Colocasia esculenta (L.) Schott] accessions. In: V International symposium on new floricultural crops, Acta Hortic, vol 683, pp 307–312

    Google Scholar 

  9. Rashmi DR, Raghu N, Gopenath TS, Palanisamy P, Bakthavatchalam P, Karthikeyan M, Gnanasekaran A, Ranjith MS, Chandrashekrappa GK, Basalingappa KM (2018) Taro (Colocasia esculenta): an overview. J Med Plants Stud 6:156–161

    Google Scholar 

  10. Nogodula JN, Draug JMD, Jamero MS, Suyom CL (2012) Phytochemical and antibacterial action of taro (Colocasia esculenta, Araceaea) aqueous-ethanolic leaf extract against selected bacterial strains. UIC Res J 1:221–236

    Google Scholar 

  11. Alcantara RM, Hurtada WA, Dizon EI (2013) The nutritional value and phytochemical components of taro [Colocasia esculenta (L.) Schott] powder and its selected processed foods. Nutr Food Sci 3:1–7

    Article  Google Scholar 

  12. Ghan HT, Kao-Jao THC, Nakayama TOM (1977) Anthocyanin composition of taro. J Food Sci 42:19–21

    Article  Google Scholar 

  13. Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N (2011) Colocasia esculenta: a potent indigenous plant. Int J Nutr Pharmacol Neurol Dis 1:90–96

    Article  CAS  Google Scholar 

  14. Iwashina T, Konishi T, Takayama A, Fukada M, Ootani S (1999) Isolation and identification of the flavonoids in the leaves of taro. Ann Tsukuba Bot Gard 18:71–74

    Google Scholar 

  15. Gupta K, Kumar A, Tomer V, Kumar V, Saini M (2019) Potential of Colocasia leaves in human nutrition: review on nutritional and phytochemical properties. J Food Biochem 43:e12878

    Article  PubMed  Google Scholar 

  16. Muñoz-Cuervo I, Malapa R, Michalet S, Lebot V, Legendre L (2016) Secondary metabolite diversity in taro, Colocasia esculenta (L.) Schott, corms. J Food Compost Anal 52:24–32

    Google Scholar 

  17. Huang AS, Tanudjaja LS (1992) Application of anion-exchange high-performance liquid chromatography in determining oxalates in taro (Colocasia esculenta) corms. J Agric Food Chem 40:2123–2126

    Article  CAS  Google Scholar 

  18. Sefa-Dedeh S, Agyir-Sackey EK (2004) Chemical composition and the effect of processing on oxalate content of cocoyam Xanthosoma sagittifolium and Colocasia esculenta cormels. Food Chem 85:479–487

    Article  CAS  Google Scholar 

  19. Lin H, Huang AS (1993) Chemical composition and some physical properties of a water-soluble gum in taro (Colocasia esculenta). Food Chem 48:403–409

    Article  CAS  Google Scholar 

  20. Bezerra IC, Castro LA, Neshich G, de Almeida ER, Grossi de Sá MF, Mello LV, Monte-Neshich DC (1995) A corm-specific gene encodes tarin, a major globulin of taro (Colocasia esculenta L. Schott). Plant Mol Biol 28:137–144

    Article  CAS  PubMed  Google Scholar 

  21. Kundu N, Campbell P, Hampton B, Lin CY, Ma X, Ambulos N, Zhao XF, Goloubeva O, Holt D, Fulton AM (2012) Antimetastatic activity isolated from Colocasia esculenta (taro). Anticancer Drugs 23:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pereira PR, de Aquino Mattos ÉB, Corrêa ACNT, Vericimo AM, Paschoalin VM (2020) Anticancer and immunomodulatory benefits of taro (Colocasia esculenta) corms, an underexploited tuber crop. Int J Mol Sci 22:265

    Article  Google Scholar 

  23. Ferguson LR, Roberton AM, McKenzie RJ, Watson ME, Harris PJ (1992) Adsorption of a hydrophobic mutagen to dietary fiber from taro (Colocasia esculenta), an important food plant of the South Pacific. Nutr Cancer 17:85–95

    Article  CAS  PubMed  Google Scholar 

  24. Reyad-ul-Ferdous M, Arman MSI, Tanvir MMI, Sumi S, Siddique KM, Billah MM, Islam MS (2015) Biologically potential for pharmacologicals and phytochemicals of medicinal plants of Colocasia esculenta: a comprehensive review. Am J Clin Exp Med 3:7–11

    Article  CAS  Google Scholar 

  25. Ouédraogo N, Sombié D, Eric PA, Traoré RE, Sama H, Bationo Kando P, Sawadogo M, Lebot V (2023) Nutritional and phytochemical characterization of taro (Colocasia esculenta) germplasm from Burkina Faso. J Plant Breed Crop Sci 15:32–41

    Article  Google Scholar 

  26. Sudhakar P, Thenmozhi V, Srivignesh S, Dhanalakshmi M (2020) Colocasia esculenta (L.) Schott: pharmacognostic and pharmacological review. J Pharmacogn Phytochem 9:1382–1386

    Article  CAS  Google Scholar 

  27. Biswas A, Ahmed T, Rana MR, Hoque MM, Ahmed MF, Sharma M, Sridhar K, Ara R, Stephen Inbaraj B (2023) Fabrication and characterization of ZnO nanoparticles-based biocomposite films prepared using carboxymethyl cellulose, taro mucilage, and black cumin seed oil for evaluation of antioxidant and antimicrobial activities. Agronomy 13:147

    Article  CAS  Google Scholar 

  28. Al-Kaf AG, Al-Deen AM, ALhaidari SAA, Al-Hadi FA (2019) Phytochemical analysis and antimicrobial activity of Colocasia esculenta (taro) medicinal plant leaves used in folk medicine for treatment of wounds and burns in Hufash district al Mahweet Governorate – Yemen. Univers J Pharm Res 4:32–35

    Google Scholar 

  29. Alzabt AM, Rukayadi Y (2021) Antibacterial activity of taro [Colocasia esculenta (L.) Schott] leaves extract against foodborne pathogens and its effect on microbial population in raw chicken meat. Food Res 5:401–409

    Article  Google Scholar 

  30. Hama Gharib DS, Salman RF (2023) Feasibility of the crude extracts of Amorphophallus paeoniifolius and Colocasia esculenta as intracanal medicaments in endodontic therapy in comparison to the 940 nm diode laser: an in vitro antimicrobial study. J Dent Sci 18:145–156

    Article  PubMed  Google Scholar 

  31. Chakraborty P, Deb P, Chakraborty S, Chatterjee B, Abraham J (2015) Cytotoxicity and antimicrobial activity of Colocasia esculenta. J Chem Pharm Res 7:627–635

    CAS  Google Scholar 

  32. Dutta S, Aich B (2017) Study of antibacterial and antifungal activity of the leaves of Colocasia esculenta Linn. Int J Pharm Sci Res 8:1184

    CAS  Google Scholar 

  33. Wang K-M, Kumar S, Cheng Y-S, Venkatagiri S, Yang AH, Yeh KW (2008) Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta). FEBS J 275:4980–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pereira PR, Corrêa ACNTF, Vericimo MA, Paschoalin VMF (2018) Tarin, a potential immunomodulator and COX-inhibitor lectin found in taro (Colocasia esculenta). Compr Rev Food Sci Food Saf 17:878–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pereira PR, Silva JT, Verícimo MA, Paschoalin VM, Teixeira GA (2015) Crude extract from taro (Colocasia esculenta) as a natural source of bioactive proteins able to stimulate haematopoietic cells in two murine models. J Funct Foods 18:333–343

    Article  CAS  Google Scholar 

  36. Bamia C (2018) Dietary patterns in association to cancer incidence and survival: concept, current evidence, and suggestions for future research. Eur J Clin Nutr 72:818–825

    Article  PubMed  Google Scholar 

  37. Li Y, Schoufour J, Wang DD, Dhana K, Pan A, Liu X, Song M, Liu G, Shin HJ, Sun Q, Al-Shaar L (2020) Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: prospective cohort study. BMJ 368:l6669

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brown AC, Reitzenstein JE, Liu J, Jadus MR (2005) The anti-cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells in vitro. Phytother Res 19:767–771

    Article  PubMed  Google Scholar 

  39. Sang Chan Y, Ho Wong J, Bun Ng T (2010) A cytokine-inducing hemagglutinin from small taros. Protein Pept Lett 17:823–830

    Article  Google Scholar 

  40. Park H-R, Lee H-S, Cho SY, Kim YS, Shin KS (2013) Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int J Mol Med 31:361–368

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura Y, Suganuma E, Kuyama N, Sato K, Ohtsuki K (1998) Comparative bio-antimutagenicity of common vegetables and traditional vegetables in Kyoto. Biosci Biotechnol Biochem 62:1161–1165

    Article  CAS  PubMed  Google Scholar 

  42. Botting KJ, Young MM, Pearson AE, Harris PJ, Ferguson LR (1999) Antimutagens in food plants eaten by polynesians: micronutrients, phytochemicals and protection against bacterial mutagenicity of the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline. Food Chem Toxicol 37:95–103

    Article  CAS  PubMed  Google Scholar 

  43. Baro MR, Das M, Kalita A, Das B, Sarma K (2023) Exploring the anti-inflammatory potential of Colocasia esculenta root extract in in-vitro and in-vivo models of inflammation. J Ethnopharmacol 303:116021

    Article  CAS  PubMed  Google Scholar 

  44. Biren NS, Nayak BS, Bhatt SP, Jalalpure SS, Seth AK (2007) The anti-inflammatory activity of the leaves of Colocasia esculenta. Saudi Pharm J 15:228–232

    CAS  Google Scholar 

  45. Agyare C, Boakye YD, Apenteng JA, Dapaah SO, Appiah T, Adow A (2016) Antimicrobial and anti-inflammatory properties of Anchomanes difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochem Pharmacol 5:201

    Google Scholar 

  46. Patil BR, Ageely HM (2011) Antihepatotoxic activity of Colocasia esculenta leaf juice. Int J Adv Biotechnol Res 2:296–304

    Google Scholar 

  47. Chinonyelum AN, Uwadiegwu AP, Nwachukwu OC, Emmanuel O (2015) Evaluation of hepatoprotective activity of Colocasia esculenta (L. Schott) leaves on thioacetamide-induced hepatotoxicity in rats. Pak J Pharm Sci 28:2237–2241

    CAS  PubMed  Google Scholar 

  48. Saikia A, Das M, Saikia Q (2018) Hepatoprotective potential of the methanolic extract of Colocasia esculenta on iron overload induced mice. Med Plants Int J Phytomed Relat Ind 10:243–251

    Article  Google Scholar 

  49. Thirupathy KP, Tulshkar A, Vijaya C (2011) Neuropharmacological activity of Lippia nodiflora Linn. Pharmacognosy Res 3:194–200

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kalariya M, Parmar S, Sheth N (2010) Neuropharmacological activity of hydroalcoholic extract of leaves of Colocasia esculenta. Pharm Biol 48:1207–1212

    Article  PubMed  Google Scholar 

  51. Grindley PBA, Omoruyi F, Asemota HN, Morrison EYSA (2002) Carbohydrate digestion and intestinal ATPases in streptozotocin-induced diabetic rats fed extract of yam (Dioscorea cayenensis) or dasheen (Colocasia esculenta). Nutr Res 22:333–341

    Article  CAS  Google Scholar 

  52. Boban PT, Nambisan B, Sudhakaran PR (2006) Hypolipidaemic effect of chemically different mucilages in rats: a comparative study. Br J Nutr 96:1021–1029

    Article  CAS  PubMed  Google Scholar 

  53. Sharma S, Jan R, Kaur R, Riar CS (2020) Taro (Colocasia esculenta). In: Nayik GA, Gull A (eds) Antioxidants in vegetables and nuts – properties and health benefits. Springer, Singapore, pp 341–353

    Chapter  Google Scholar 

  54. Tiwari AK (2005) Wisdom of ayurveda in perceiving diabetes: enigma of therapeutic recognition. Curr Sci 88:1043–1051

    CAS  Google Scholar 

  55. Moon H-I, Jung J-C, Lee J (2006) Aldose reductase inhibitory effect by tectorigenin derivatives from Viola hondoensis. Bioorg Med Chem 14:7592–7594

    Article  CAS  PubMed  Google Scholar 

  56. Tiwari AK, Rao JM (2002) Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci 83:30–38

    CAS  Google Scholar 

  57. Lokesh D, Amit SD (2006) Diabetes mellitus-its possible pharmacological evaluation techniques and naturotherapy. Int J Green Pharm 1:15–27

    Google Scholar 

  58. Li HM, Hwang SH, Kang BG, Hong JS, Lim SS (2014) Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase. Molecules 19:13212–13224

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kumawat NS, Chaudhari SP, Wani NS, Deshmukh TA, Patil VR (2010) Antidiabetic activity of ethanol extract of Colocasia esculenta leaves in alloxan induced diabetic rats. Int J Pharm Tech Res 2:1246–1249

    Google Scholar 

  60. Eleazu CO, Iroaganachi M, Eleazu KC (2013) Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats. J Diabetes Res 2013:160964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iqbal J, Zaidi M (2009) Understanding estrogen action during menopause. Endocrinology 150:3443–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Davis SR, Lambrinoudaki I, Lumsden M, Mishra GD, Pal L, Rees M, Santoro N (2015) Menopause. Nat Rev Dis Primers 1:15004

    Article  PubMed  Google Scholar 

  63. Djerassi C (1992) Steroid research at Syntex: “the pill” and cortisone. Steroids 57:631–641

    Article  CAS  PubMed  Google Scholar 

  64. Sirotkin AV, Harrath AH (2014) Phytoestrogens and their effects. Eur J Pharmacol 741:230–236

    Article  PubMed  Google Scholar 

  65. Mc Rodrigues G, Db Borges B, Gabriela Q Moreira L, Aparecida G Rossete É, de Castro Franca S (2018) Effects of estrogen-like plant compounds on the vaginal epithelium pituitary, adrenal glands, and uterus of rats. Exp Biol Med 243:1173–1184

    Article  Google Scholar 

  66. Kalariya M, Prajapati R, Parmar SK, Sheth N (2015) Effect of hydroalcoholic extract of leaves of Colocasia esculenta on marble-burying behavior in mice: implications for obsessive-compulsive disorder. Pharm Biol 53:1239–1242

    Article  PubMed  Google Scholar 

  67. Vasant OK, Vijay BG, Virbhadrappa SR, Dilip NT, Ramahari MV, Laxamanrao BS (2012) Antihypertensive and diuretic effects of the aqueous extract of Colocasia esculenta Linn. leaves in experimental paradigms. Iran J Pharm Res 11:621–634

    PubMed  PubMed Central  Google Scholar 

  68. Prastiwi R, Siska S, Utami EB, Witji GP (2017) Antihypertensive and diuretic effects of the ethanol extract of Colocasia esculenta (L.) Schott. leaves. Indones J Pharm 14:99–102

    Google Scholar 

  69. Dwivedi P, Dwivedi J, Patel D, Desai S, Meshram D (2016) Phytochemical analysis and assessment of in vitro urolithiatic activity of colocasia leaves. J Med Plants 4:43–47

    Google Scholar 

  70. Wadd NV, Naikwade NS, Wadkar KA, Tamboli SA (2016) Antiurolithic activity of combination of herbal extracts against calcium oxalate induced urolithiasis in rats. World J Pharm Res 5(6):1931–1952

    CAS  Google Scholar 

  71. Waller PJ (1997) Sustainable helminth control of ruminants in develo** countries. Vet Parasitol 71:195–207

    Article  CAS  PubMed  Google Scholar 

  72. Waller PJ (2003) The future of anthelmintics in sustainable parasite control programs for livestock. Helminthologia 40:97–102

    CAS  Google Scholar 

  73. Tariq KA, Chishti MZ, Ahmad F, Shawl AS (2009) Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 160:83–88

    Article  CAS  PubMed  Google Scholar 

  74. Lim TK (2015) Colocasia esculenta. In: Lim TK (ed) Edible medicinal and non medicinal plants: volume 9, Modified stems, roots, bulbs. Springer Netherlands, Dordrecht, pp 454–492

    Chapter  Google Scholar 

  75. Sahu AB, Tripathy PK, Joshi P, Sahu PK (2019) Phytochemical analysis and invitro anthelmintic activity of hydro-alcoholic and aqueous extract of Colocasia esculenta (rhizome part). World J Pharm Pharm Sci 8:1643–1652

    CAS  Google Scholar 

  76. Abdulbasit SB, Barredo VC, Bernales PN, Sambarani SA, Tayone NJ (2018) In vitro anthelmintic activity of Colocasia Esculenta Linn. (Gabi) leaves extract solution against Ascaris suum in pigs. Adv Pharm Res 4, https://doi.org/10.7828/apr.v4i1.1121

  77. Widhyastini GAM, Nurilmala F, Misja (2018) Ethanol extract (Colocasia esculenta (L.) Schott.) hideung cultivar as anti-scabies through in-vitro. In: Proceedings of the 1st international conference on recent innovations (ICRI 2018), pp 2151–2158. https://doi.org/10.5220/0009940221512158

  78. Ribeiro GG, Pessôa LR, de Abreu MD, Corrêa LB, Pereira AA, Chagas MA, Brandão FZ, da Costa CA, Boaventura GT (2018) Taro flour (Colocasia esculenta) increases testosterone levels and gametogenic epithelium of Wistar rats. J Dev Orig Health Dis 9:373–376

    Article  CAS  PubMed  Google Scholar 

  79. Paull RE, Zerpa-Catanho D, Chen NJ, Uruu G, Wai CM, Kantar M (2022) Taro raphide-associated proteins: allergens and crystal growth. Plant Direct 6:e443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Singh D, Jackson G, Hunter D, Fullerton R, Lebot V, Taylor M, Iosefa T, Okpul T, Tyson J (2012) Taro leaf blight – a threat to food security. Collect FAO Agric 2:182–203

    Google Scholar 

Download references

Acknowledgments

The authors express their appreciation for the support provided by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. GRANT4526].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jameel M. Al-Khayri or Praveen Nagella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wudali, S.N., Barwad, A., Banadka, A., Shaikh, A., Al-Khayri, J.M., Nagella, P. (2023). Bioactive Compounds and Biological Activities of Taro (Colocasia esculenta (L.). Schott). In: Murthy, H.N., Paek, K.Y., Park, SY. (eds) Bioactive Compounds in the Storage Organs of Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29006-0_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29006-0_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29006-0

  • Online ISBN: 978-3-031-29006-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation