Coumarins as Emerging Anti-Viral Compounds from Natural Origins: Ethnopharmacology, Chemistry, Mechanism of Action, Clinical and Preclinical Studies, and Future Perspectives

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Abstract

From the natural origin, more than 1300 coumarins have already been recognized. Coumarins are natural products and secondary metabolites in plants, and they can be synthesized chemically. Coumarins are fused benzene and pyrone ring systems. Coumarin is a fragrant chemical that emits a distinctive odor. They are anti-viral compounds having anti-HIV, anti-dengue, anti-hepatitis, anti-influenza, and anti-chikungunya properties. Coumarins are classified into different classes. Pyranocoumarins are classified into two classes: first one is the angular type, and the second is the linear type. Moreover, angular-type pyranocoumarins show anti-viral activity; calanolide A, B, and F (+)-dihydrocalanolide A and B pseudocordatolide from inophyllum A, B, C, E, P, G1, and G2 are examples. Coumarins show other pharmacology activities like antitumor, cytotoxicity, antioxidant, antimalarial, anticancer, and anticoagulant. The pattern of substitution affects the pharmacological, biochemical, and therapeutic properties of simple coumarins. The anticoagulants warfarin and dicoumarol, aflatoxins, and psoralens are much more complex-related substances based on the coumarin nucleus. Calanolide A, calanolide B, (+)-12-oxo-calanolide A, and dihydrocalanolide B were tested in vitro in combination with NRTIs, NNRTIs, and PIs. They had different anti-viral synergistic or additive interactions with NRTIs, NNRTIs, and PIs. Coumarin derivatives have been synthesized using a variety of methods: Perkin reaction, Bachmann-Duisbery reaction, Pechmann reaction, and Kostanecki acylation of o-hydroxy ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIDS:

Acquired Immunodeficiency Syndrome

CHIKV:

Chikungunya virus

DENV:

Dengue viruses

DNA:

Deoxyribonucleic acid

EV71:

Enterovirus 71

HCV:

Hepatitis C virus

HDV:

Hepatitis delta virus

NAIs:

Neuraminidase inhibitors

RAV:

Resistance-associated variants

RNA:

Ribonucleic acid

RT:

Reverse transcriptase inhibitors

SARS:

Severe acute respiratory syndrome

References

  1. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res 10(2):354–367

    Article  CAS  PubMed  Google Scholar 

  2. Abe T, Marutani Y, Shoji I (2019) Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol 63(2):51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gurjar VK, Pal D, Patel AD (2020) Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents. In: Pal D (ed) Pyrazole preparation and uses. NOVA Science, New York. ISBN Number: 978-1-53618-250-7

    Google Scholar 

  4. Pal D, Mandal M, Senthilkumar MGP, Padhiari A (2006) Antibacterial activity of methanol extract of Cuscuta reflexa Roxb. stem and Corchorus olitorius Linn. seed. Fitoterapia 77(7–8):589–591

    Article  CAS  PubMed  Google Scholar 

  5. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L.f. Sci Res Essays 2(11):486–490

    Google Scholar 

  6. Pal D, Singh V, Pandey DD, Maurya RK (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm Pharm Sci 6(8):213–216

    CAS  Google Scholar 

  7. Pal D, Tripathy R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial and pharmacological evaluation of some 2,5-disubstituted sulphonyl amino 1,3,4- oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives. J Adv Pharm Tech Res 5:196–201

    Article  Google Scholar 

  8. Rani P, Pal D, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation associated cancers. J Chemother 28(4):255–265

    Article  CAS  PubMed  Google Scholar 

  9. Saha S, Pal D, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho hydroxyl phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi Rapid Med Chem 1:1–8

    Google Scholar 

  10. Jassim SA, Naji MA (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95(3):412–427

    Article  CAS  PubMed  Google Scholar 

  11. Li G, **g X, Zhang P, De Clercq E (2021) Antiviral classification. In: Encyclopedia of Virology, Academic Publishers, Cambridge. p 121

    Google Scholar 

  12. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int: 2013:963248.

    Google Scholar 

  13. Mishra S, Pandey A, Manvati S (2020) Coumarin: an emerging antiviral agent. Heliyon 6(1):03217

    Article  Google Scholar 

  14. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins – an important class of phytochemicals. In: Phytochemicals-isolation, characterisation, and role in human health, vol 25, pp 533–538

    Google Scholar 

  15. Supuran CT (2020) Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem 35(1):1462–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoult JR, Payá M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol Vasc S 27(4):713–722

    Article  CAS  Google Scholar 

  17. Sethna SM, Shah NM (1945) The chemistry of Coumarins. Chem Rev 36(1):1–62

    Article  CAS  Google Scholar 

  18. Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5(2):293–308

    Article  CAS  Google Scholar 

  19. Li ZL, Li Y, Qin NB, Li DH, Liu ZG, Liu Q, Hua HM (2016) Four new coumarins from the leaves of Calophyllum inophyllum. Phytochem Lett 16:203–206

    Article  CAS  Google Scholar 

  20. Laure F, Raharivelomanana P, Butaud JF, Bianchini JP, Gaydou EM (2008) Screening of anti-HIV-1 inophyllums by HPLC–DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands. Anal Chim Acta 624(1):147–153

    Article  CAS  PubMed  Google Scholar 

  21. Leitis Z (2019) Synthesis of phenyl ring substituted 4-Aryl-3, 4-Dihydrocoumarines. Key Eng Mater 800:3–8

    Article  Google Scholar 

  22. Cechinel Filho V, Meyre-Silva C, Niero R (2009) Chemical and pharmacological aspects of the genus Calophyllum. Chem Biodivers 6(3):313–327

    Article  CAS  PubMed  Google Scholar 

  23. Zhu JJ, Jiang JG (2018) Pharmacological and nutritional effects of natural coumarins and their structure-activity relationships. Mol Nutr Food Res 62(14):1701073

    Article  Google Scholar 

  24. Sarker SD, Nahar L (2017) Progress in the chemistry of naturally occurring coumarins. Prog Chem Org Nat Prod 106:241–304

    CAS  PubMed  Google Scholar 

  25. Ghare SS, Donde H, Chen WY, Barker DF, Gobejishvilli L, McClain CJ, Barve SS, Joshi-Barve S (2016) Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug zidovudine. Toxicol In Vitro 35:66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sancho R, Márquez N, Gómez-Gonzalo M, Calzado MA, Bettoni G, Coiras MT, Alcamí J, López-Cabrera M, Appendino G, Muñoz E (2004) Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway. J Biol Chem 279(36):37349–37359

    Article  CAS  PubMed  Google Scholar 

  27. Spino C, Dodier M, Sotheeswaran S (1998) Anti-HIV coumarins from Calophyllum seed oil. Bioorganic Med Chem Lett 8(24):3475–3478

    Article  CAS  Google Scholar 

  28. Nahar L, Talukdar AD, Nath D, Nath S, Mehan A, Ismail F, Sarker SD (2020) Naturally occurring calanolides: occurrence, biosynthesis, and pharmacological properties including therapeutic potential. Molecules 25(21):4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srivastav VK, Tiwari M, Zhang X, Yao XJ (2018) Synthesis and antiretroviral activity of 6-acetyl-coumarin derivatives against HIV-1 infection. Indian J Pharm Sci 80(1):108–117

    Article  CAS  Google Scholar 

  30. Craxì A, Laffi G, Zignego AL (2008) Hepatitis C virus (HCV) infection: a systemic disease. Mol Asp Med 29(1–2):85–95

    Article  Google Scholar 

  31. Sandmann L, Schulte B, Manns MP, Maasoumy B (2019) Treatment of chronic hepatitis C: efficacy, side effects, and complications. Visc Med 35(3):161–170

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lanini S, Ustianowski A, Pisapia R, Zumla A, Ippolito G (2019) Viral hepatitis: etiology, epidemiology, transmission, diagnostics, treatment, and prevention. Infect Dis Clin 33(4):1045–1062

    Article  Google Scholar 

  33. Farci P, Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (2002) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis. J Hepatol 36(5):582–585

    Article  PubMed  Google Scholar 

  34. Kaushik-Basu N, Bopda-Waffo A, Talele TT, Basu A, Costa PR, Da Silva AJ, Sarafianos SG, Noel F (2008) Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Res 36(5):1482–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Clercq E (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1(1):13–25

    Article  PubMed  Google Scholar 

  36. Hwu JR, Singha R, Hong SC, Chang YH, Das AR, Vliegen I, De Clercq E, Neyts J (2008) Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antivir Res 77(2):157–162

    Article  CAS  PubMed  Google Scholar 

  37. Hsu J, Santesso N, Mustafa R, Brozek J, Chen YL, Hopkins JP, Cheung A, Hovhannisyan G, Ivanova L, Flottorp SA, Sæterdal I (2012) Antivirals for treatment of influenza: a systematic review and meta-analysis of observational studies. Ann Intern Med 156(7):512–524

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nair H, Brooks WA, Katz M, Roca A, Berkley JA, Madhi SA, Simmerman JM, Gordon A, Sato M, Howie S, Krishnan A (2011) Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet 378(9807):1917–1930

    Article  PubMed  Google Scholar 

  39. World Health Organization (2009). Update on oseltamivir resistant pandemic A (H1N1)(010) influenza virus: Wkly Epidemiol Rec 85(6):37–40

    Google Scholar 

  40. Kaur P, Chu JJ (2013) Chikungunya virus: an update on antiviral development and challenges. Drug Discov Today 18(19–20):969–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, Povinelli L, Cox NJ, Klimov AI (2005) Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 9492:1175–1181

    Article  Google Scholar 

  42. Yan W, Zheng C, He J, Zhang W, Huang XA, Li X, Wang Y, Wang X (2018) Eleutheroside B1 mediates its anti-influenza activity through POLR2A and N-glycosylation. Int J Mol Med 42(5):2776–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Spanakis N, Pitiriga V, Gennimata V, Tsakris A (2014) A review of neuraminidase inhibitor susceptibility in influenza strains. Expert Rev Anti-Infect Ther 12(11):1325–1336

    Article  CAS  PubMed  Google Scholar 

  44. Yusufzai SK, Osman H, Khan MS, Razik BM, Mohamad S, Sulaiman O, Gansau JA, Johansah N, Ezzat MO, Parumasivam T, Rosli MM (2018) Synthesis, X-ray crystallographic study, pharmacology and docking of hydrazinyl thiazolyl coumarins as dengue virus NS2B/NS3 serine protease inhibitors. Med Chem Res 27(6):1647–1665

    Article  CAS  Google Scholar 

  45. Pavurala S, Vaarla K, Kesharwani R, Naesens L, Liekens S, Vedula RR (2018) Bis coumarinyl bis triazolothiadiazinyl ethane derivatives: synthesis, antiviral activity evaluation, and molecular docking studies. Synth Commun 48(12):1494–1503

    Article  CAS  Google Scholar 

  46. Murthy HK, Judge K, DeLucas L, Padmanabhan R (2000) Retracted: crystal structure of dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J Mol Biol 301:759–767

    Article  CAS  PubMed  Google Scholar 

  47. Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13(4):372–373

    Article  CAS  PubMed  Google Scholar 

  48. Chappell KJ, Nall TA, Stoermer MJ, Fang NX, Tyndall JD, Fairlie DP, Young PR (2005) Site-directed mutagenesis and kinetic studies of the West Nile virus NS3 protease identify key enzyme-substrate interactions. J Biol Chem 280(4):2896–2903

    Article  CAS  PubMed  Google Scholar 

  49. Coulerie P, Maciuk A, Lebouvier N, Hnawia E, Guillemot JC, Canard B, Figadère B, Nour M (2013) Phytochemical study of myrtopsis corymbosa, perspectives for anti-dengue natural compound research. Rec Nat Prod 7(3):250

    CAS  Google Scholar 

  50. Lim SY, Chieng JY, Pan Y (2021) Recent insights on anti-dengue virus (DENV) medicinal plants: review on in vitro, in vivo and in silico discoveries. All Life 14(1):1–33

    Article  CAS  Google Scholar 

  51. Kao YT, Lai M, Yu CY (2018) How dengue virus circumvents innate immunity. Front Immunol 9:2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noble CG, Chen YL, Dong H, Gu F, Lim SP, Schul W, Wang QY, Shi PY (2010) Strategies for development of dengue virus inhibitors. Antivir Res 85(3):450–462

    Article  CAS  PubMed  Google Scholar 

  53. Chikungunya TT (2021) Current status of Chikungunya in India. Front Microbiol 12:695173

    Article  Google Scholar 

  54. Lagoja IM (2005) Pyrimidine as constituent of natural biologically active compounds. Chem Biodivers 2(1):1–50

    Article  CAS  PubMed  Google Scholar 

  55. Abdel-Aal MT (2010) Synthesis and anti-hepatitis B activity of new substituted uracil and thiouracil glycosides. Arch Pharm Res 33(6):797–805

    Article  CAS  PubMed  Google Scholar 

  56. Ordonez P, Hamasaki T, Isono Y, Sakakibara N, Ikejiri M, Maruyama T, Baba M (2012) Anti-human immunodeficiency virus type 1 activity of novel 6-substituted 1-benzyl-3-(3, 5-dimethylbenzyl) uracil derivatives. Antimicrob Agents Chemother 56(5):2581–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, Navre M, Shi L, Skene RJ, Asakawa T, Takeuchi K (2007) Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 50(10):2297–2300

    Article  CAS  PubMed  Google Scholar 

  58. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103(3):893–930

    Article  CAS  PubMed  Google Scholar 

  59. Subudhi BB, Chattopadhyay S, Mishra P, Kumar A (2018) Current strategies for inhibition of chikungunya infection. Viruses 10(5):235

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP (2007) Characterization of reemerging chikungunya virus. PLoS Pathog 3(6):89

    Article  Google Scholar 

  61. Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans R Soc Trop Med Hyg 49(1):28–32

    Article  CAS  PubMed  Google Scholar 

  62. Kar P, Knecht V (2012) Mutation-induced loop opening and energetics for binding of tamiflu to influenza N8 neuraminidase. J Phys Chem 116(21):6137–6149

    Article  CAS  Google Scholar 

  63. Battisti V, Urban E, Langer T (2021) Antivirals against the Chikungunya Virus. Viruses. 13(7): 1–35

    Google Scholar 

  64. Hwu JR, Huang WC, Lin SY, Tan KT, Hu YC, Shieh FK, Bachurin SO, Ustyugov A, Tsay SC (2019) Chikungunya virus inhibition by synthetic coumarin–guanosine conjugates. Eur J Med Chem 15(166):136–143

    Article  Google Scholar 

  65. Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S (2021) Phytochemicals from plant foods as potential source of antiviral agents: an overview. Pharmaceuticals 14(4):381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang D, de la Fuente C, Deng L, Wang L, Zilberman I, Eadie C, Healey M, Stein D, Denny T, Harrison LE, Meijer L (2001) Inhibition of human immunodeficiency virus type 1 transcription by chemical cyclin-dependent kinase inhibitors. J Virol 75(16):7266–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buckheit RW Jr, Russell JD, Xu ZQ, Flavin M (2000) Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication. Antivir Chem Chemother 11(5):321–327

    Article  CAS  PubMed  Google Scholar 

  68. César GZ, Alfonso MG, Marius MM, Elizabeth EM, Ángel CB, Maira HR, Guadalupe CL, Manuel JE, Ricardo RC (2011) Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia 82(7):1027–1034

    Article  PubMed  Google Scholar 

  69. Dong B, Ma T, Zhang T, Zhou CM, Liu G, Wang L, Tao PZ, Zhang XQ (2011) Anti-HIV-1 activity and structure-activity relationship of pyranocoumarin analogs. Yao xue xue bao Acta pharm Sin 46(1):35–38

    CAS  Google Scholar 

  70. Buckheit RW Jr, White EL, Fliakas-Boltz V, Russell J, Stup TL, Kinjerski TL, Osterling MC, Weigand A, Bader JP (1999) Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide. Antimicrob Agents Chemo 43(8):1827–1834

    Article  CAS  Google Scholar 

  71. Currens MJ, Gulakowski RJ, Mariner JM, Moran RA, Buckheit RW, Gustafson KR, McMahon JB, Boyd MR (1996) Antiviral activity and mechanism of action of calanolide A against the human immunodeficiency virus type-1. J Pharmacol Exp 279(2):645–651

    CAS  Google Scholar 

  72. Ahmed A, Felmlee DJ (2015) Mechanisms of hepatitis C viral resistance to direct-acting antivirals. Viruses 7(12):6716–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hwu JR, Lin SY, Tsay SC, De Clercq E, Leyssen P, Neyts J (2011) Coumarin− purine ribofuranoside conjugates as new agents against hepatitis C Virus. J Med Chem 54(7):2114–2126

    Article  CAS  PubMed  Google Scholar 

  74. Martinez GM (2017) Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complement Altern Med 17(1): 2–12

    Google Scholar 

  75. Yusufzai SK, Osman H, Khan MS, Abd Razik BM, Ezzat MO, Mohamad S, Sulaiman O, Gansau JA, Parumasivam T (2018) 4-Thiazolidinone coumarin derivatives as two-component NS2B/NS3 DENV flavivirus serine protease inhibitors: synthesis, molecular docking, biological evaluation, and structure-activity relationship studies. Chem Cent J 12(1):1–6

    Article  Google Scholar 

  76. Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R (2012) Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol 86(14):7637–7649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zainal N, Chang CP, Cheng YL, Wu YW, Anderson R, Wan SW, Chen CL, Ho TS, AbuBakar S, Lin YS (2017) Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci Rep 7(1):1–2

    Article  Google Scholar 

  78. Harper SA, Fukuda K, Uyeki TM, Cox NJ, Bridges CB (2005) Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb Mortal Wkly Rep Recomm Rep 54(8):1–41

    Google Scholar 

  79. Glezen WP (1982) Serious morbidity and mortality associated with influenza epidemics. Epidemiol Rev 4:25–44

    Article  CAS  PubMed  Google Scholar 

  80. Buckheit RW Jr, Russell JD, Xu ZQ, Flavin M (2000) Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication. Antioxid Redox Signal 11(5):321–327

    CAS  Google Scholar 

  81. Buckheit RW Jr, Fliakas-Boltz V, Decker WD, Roberson JL, Pyle CA, White EL, Bowdon BJ, McMahon JB, Boyd MR, Bader JP, Nickell DG (1994) Biological and biochemical anti-HIV activity of the benzothiadiazole class of nonnucleoside reverse transcriptase inhibitors. Antivir Res 25(1):43–56

    Article  CAS  PubMed  Google Scholar 

  82. Gulakowski RJ, McMahon JB, Staley PG, Moran RA, Boyd MR (1991) A semiautomated multiparameter approach for anti-HIV drug screening. J Virol Methods 33(1–2):87–100

    Article  CAS  PubMed  Google Scholar 

  83. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH 2nd, McMahon JB, Currens MJ, Buckheit RW Jr, Hughes SH, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerumJ. Med Chem 35(15):2735–2743

    Article  CAS  Google Scholar 

  84. Lütgehetmann M, Mancke LV, Volz T, Helbig M, Allweiss L, Bornscheuer T, Pollok JM, Lohse AW, Petersen J, Urban S, Dandri M (2012) Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation. Hepatology 55(3):685–694

    Article  PubMed  Google Scholar 

  85. Sgarbanti R, Nencioni L, Amatore D, Coluccio P, Fraternale A, Sale P, Mammola CL, Carpino G, Gaudio E, Magnani M, Ciriolo MR (2011) Redox regulation of the influenza hemagglutinin maturation process: a new cell-mediated strategy for anti-influenza therapy. Antioxid Redox Signal 15(3):593–606

    Article  CAS  PubMed  Google Scholar 

  86. Manoff SB, George SL, Bett AJ, Yelmene ML, Dhanasekaran G, Eggemeyer L, Sausser ML, Dubey SA, Casimiro DR, Clements DE, Martyak T (2015) Preclinical and clinical development of a dengue recombinant subunit vaccine. Vaccine 33(50):7126–7134

    Article  CAS  PubMed  Google Scholar 

  87. Chan YH, Lum FM, Ng LF (2015) Limitations of current in vivo mouse models for the study of chikungunya virus pathogenesis. J Med Sci 3(3):64–77

    CAS  Google Scholar 

  88. Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, Brochard P, Guigand L, Dubreil L, Lebon P, Verrier B, de Lamballerie X (2010) Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120(3):894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Akkina R (2013) New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435(1):14–28

    Article  CAS  PubMed  Google Scholar 

  90. McMahon JB, Gulakowski RJ, Weislow OS, Schultz RJ, Narayanan VL, Clanton DJ, Pedemonte R, Wassmundt FW, Buckheit RW Jr, Decker WD (1993) Diarylsulfones A new chemical class of nonnucleoside antiviral inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 37(4):754–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilipkumar Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pal, D., Bareth, K., Rani, P., Kandar, C.C., Mishra, A. (2024). Coumarins as Emerging Anti-Viral Compounds from Natural Origins: Ethnopharmacology, Chemistry, Mechanism of Action, Clinical and Preclinical Studies, and Future Perspectives. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_29

Download citation

Publish with us

Policies and ethics

Navigation