Recent Advances in Microbial Biodegradation

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

With the widespread consumption of synthetic materials around the world, the amount of waste produced has increased, resulting in higher levels of toxicity in marine and soil ecosystems and causing severe health issues. Research on waste material degradation was focused on physical, chemical, biological, and enzymatic techniques to waste degradation. Interestingly, microorganisms like algae, fungi, and bacteria have attracted scientists’ interest as a bioremediation technique due to their cost-effectiveness and affordability. This work discusses many features of biodegradation in natural environments and variables that influence microbial waste degradation and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ag NP:

Silver nanoparticle

BES:

2-bromoethanesulfonate

CNTs:

Carbon nanotubes

DDT:

Dichloro-diphenyl trichloroethane

IET:

Interspecies electron transfer

LAC:

Laccase

LDPE:

Low-density polyethylene

Lip:

Lignin peroxidase

nZVI:

Zero valent iron

PAHs:

polycyclic aromatic hydrocarbons

PCL:

Polycaprolactone

PCP:

Pentachlorophenol

PES:

Polyethylene succinate

PHA:

Polyhydroxyalkanoates

PLA:

Polylactic acid

sp.:

Species

TEC:

Tetracycline

WWTPs:

Wastewater treatment plants

References

  1. J.I. Prosser, B.J.M. Bohannan, T.P. Curtis, R.J. Ellis, M.K. Firestone, R.P. Freckleton, J.L. Green, L.E. Green, K. Killham, J.J. Lennon, A.M. Osborn, M. Solan, C.J. van der Gast, J.P.W. Young, The role of ecological theory in microbial ecology, Nat. Rev. Microbiol. 5 (2007). https://doi.org/10.1038/nrmicro1643.

  2. Y. Moënne-Loccoz, P. Mavingui, C. Combes, P. Normand, C. Steinberg, Microorganisms and biotic interactions, in: Environ. Microbiol. Fundam. Appl., 2015. https://doi.org/10.1007/978-94-017-9118-2_11.

  3. R.Y. Morita, K. Horikoshi, W.D. Grant, Extremophiles: Microbial Life in Extreme Environments, Bioscience. 49 (1999).

    Google Scholar 

  4. H. Chandran, M. Meena, K. Sharma, Microbial Biodiversity and Bioremediation Assessment Through Omics Approaches, Front. Environ. Chem. 1 (2020). https://doi.org/10.3389/fenvc.2020.570326.

  5. Principles and Applications of Environmental Biotechnology for a Sustainable Future 2017. https://doi.org/10.1007/978-981-10-1866-4.

  6. N. Tahri, W. Bahafid, H. Sayel, N. El Ghachtouli, Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms, in: Biodegrad. – Life Sci., 2013. https://doi.org/10.5772/56194.

  7. C.S. Karigar, S.S. Rao, Role of microbial enzymes in the bioremediation of pollutants: A review, Enzyme Res. 2011 (2011). https://doi.org/10.4061/2011/805187.

  8. J.Y. Chee, N.-S. Lau, (PDF) Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastic, 01-2010. (2017).

    Google Scholar 

  9. M.M. LÇŽzÇŽroaie, Multiple responses of gram-positive and gram-negative bacteria to mixture of hydrocarbons, Brazilian J. Microbiol. 41 (2010). https://doi.org/10.1590/S1517-83822010000300016.

  10. A. Muratova, N. Pozdnyakova, O. Makarov, M. Baboshin, B. Baskunov, N. Myasoedova, L. Golovleva, O. Turkovskaya, Degradation of phenanthrene by the rhizobacterium Ensifer meliloti, Biodegradation. 25 (2014). https://doi.org/10.1007/s10532-014-9699-9.

  11. X. Duan, X. Wang, J. **e, L. Feng, Y. Yan, F. Wang, Q. Zhou, Acidogenic bacteria assisted biodegradation of nonylphenol in waste activated sludge during anaerobic fermentation for short-chain fatty acids production, Bioresour. Technol. 268 (2018). https://doi.org/10.1016/j.biortech.2018.08.053.

  12. Z. LĂĽ, L. Sang, Z. Li, H. Min, Catalase and superoxide dismutase activities in a Stenotrophomonas maltophilia WZ2 resistant to herbicide pollution, Ecotoxicol. Environ. Saf. 72 (2009). https://doi.org/10.1016/j.ecoenv.2008.01.009.

  13. M. Narayanan, S. Kumarasamy, M. Ranganathan, S. Kandasamy, G. Kandasamy, K. Gnanavel, Enzyme and metabolites attained in degradation of chemical pesticides Ăź Cypermethrin by Bacillus cereus, in: Mater. Today Proc., 2020. https://doi.org/10.1016/j.matpr.2020.05.722.

  14. B. V. Pandey, R.S. Upadhyay, Pseudomonas fluorescens can be used for bioremediation of textile effluent Direct Orange-102, Trop. Ecol. 51 (2010).

    Google Scholar 

  15. T. Toyama, T. Furukawa, N. Maeda, D. Inoue, K. Sei, K. Mori, S. Kikuchi, M. Ike, Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions, Water Res. 45 (2011). https://doi.org/10.1016/j.watres.2010.11.044.

  16. J.P. Jadhav, G.K. Parshetti, S.D. Kalme, S.P. Govindwar, Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463, Chemosphere. 68 (2007). https://doi.org/10.1016/j.chemosphere.2006.12.087.

  17. A.E.L. Hesham, S. Khan, Y. Tao, D. Li, Y. Zhang, M. Yang, Biodegradation of high molecular weight PAHs using isolated yeast mixtures: Application of meta-genomic methods for community structure analyses, Environ. Sci. Pollut. Res. 19 (2012). https://doi.org/10.1007/s11356-012-0919-8.

  18. A. Paço, K. Duarte, J.P. da Costa, P.S.M. Santos, R. Pereira, M.E. Pereira, A.C. Freitas, A.C. Duarte, T.A.P. Rocha-Santos, Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum, Sci. Total Environ. 586 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.017.

  19. I.N. Ibrahim, A. Maraqa, K.M. Hameed, I.M. Saadoun, H.M. Maswadeh, Assessment of potential plastic-degrading fungi in Jordanian habitats, Turkish J. Biol. 35 (2011). https://doi.org/10.3906/biy-0901-9.

  20. K. Murugesan, Bioremediation of paper and pulp mill effluents, Indian J. Exp. Biol. 41 (2003).

    Google Scholar 

  21. T. Bulter, M. Alcalde, V. Sieber, P. Meinhold, C. Schlachtbauer, F.H. Arnold, Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution, Appl. Environ. Microbiol. 69 (2003). https://doi.org/10.1128/AEM.69.2.987-995.2003.

  22. N. Alvarenga, W.G. Birolli, M.H.R. Seleghim, A.L.M. Porto, Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense, Chemosphere. 117 (2014). https://doi.org/10.1016/j.chemosphere.2014.05.069.

  23. W.G. Birolli, D. de A. Santos, N. Alvarenga, A.C.F.S. Garcia, L.P.C. RomĂŁo, A.L.M. Porto, Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237, Mar. Pollut. Bull. 129 (2018). https://doi.org/10.1016/j.marpolbul.2017.10.023.

  24. J. Zhou, W. Jiang, J. Ding, X. Zhang, S. Gao, Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by White Rot Fungi, Chemosphere. 70 (2007). https://doi.org/10.1016/j.chemosphere.2007.06.036.

  25. R. Ragunathan, K. Swaminathan, Biological treatment of a pulp and paper industry effluent by Pleurotus spp., World J. Microbiol. Biotechnol. 20 (2004). https://doi.org/10.1023/B:WIBI.0000033064.63031.1c.

  26. T. Volke-Seplveda, G. Saucedo-Castaeda, M. Gutirrez-Rojas, A. Manzur, E. Favela-Torres, Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger, J. Appl. Polym. Sci. 83 (2002). https://doi.org/10.1002/app.2245.

  27. M. Konduri, M. Narasu, J. Vivek, Synergistic effect of chemical and photo treatment on the rate of biodegradation of high density polyethylene by indigenous fungal isolates, Int. J. Biotechnol. Biochem. 6 (2010).

    Google Scholar 

  28. S. El Fantroussi, S.N. Agathos, Is bioaugmentation a feasible strategy for pollutant removal and site remediation?, Curr. Opin. Microbiol. 8 (2005). https://doi.org/10.1016/j.mib.2005.04.011.

  29. M. Baghour, Effect of seaweeds in phyto-remediation, in: Biotechnol. Appl. Seaweeds, 2017.

    Google Scholar 

  30. R. Madadi, A.A. Pourbabaee, M. Tabatabaei, M.A. Zahed, M.R. Naghavi, Treatment of petrochemical wastewater by the green algae chlorella vulgaris, Int. J. Environ. Res. 10 (2016). 10.22059/ijer.2016.59684.

    Google Scholar 

  31. K. Ben Chekroun, E. Sánchez, M. Baghour, The role of algae in bioremediation of organic pollutants, Int. Res. J. Public Environ. Heal. 1 (2014).

    Google Scholar 

  32. S.K. Dubey, J. Dubey, S. Mehra, P. Tiwari, A.J. Bishwas, Potential use of cyanobacterial species in bioremediation of industrial effluents, African J. Biotechnol. 10 (2011). https://doi.org/10.4314/ajb.v10i7.

  33. T. Han, Z. Qi, H. Huang, G. Fu, Biochemical and uptake responses of the macroalga Gracilaria lemaneiformis under urea enrichment conditions, Aquat. Bot. 136 (2017). https://doi.org/10.1016/j.aquabot.2016.09.012.

  34. M. Iriti, G. Castorina, V. Picchi, F. Faoro, S. Gomarasca, Acute exposure of the aquatic macrophyte Callitriche obtusangula to the herbicide oxadiazon: The protective role of N-acetylcysteine, Chemosphere. 74 (2009). https://doi.org/10.1016/j.chemosphere.2008.11.025.

  35. V. Mary Kensa, Bioremediation - An overview, J. Ind. Pollut. Control. 27 (2011).

    Google Scholar 

  36. J.W. Park, B.K. Park, J.E. Kim, Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd’s purse roots, Arch. Environ. Contam. Toxicol. 50 (2006). https://doi.org/10.1007/s00244-004-0119-8.

  37. Y. Xu, M. Lu, Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments, J. Hazard. Mater. 183 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.038.

  38. C. Mai, W. Schormann, O. Milstein, A. Huttermann, Enhanced stability of laccase in the presence of phenolic compounds, Appl. Microbiol. Biotechnol. 54 (2000). https://doi.org/10.1007/s002530000452.

  39. D. Koua, L. Cerutti, L. Falquet, C.J.A. Sigrist, G. Theiler, N. Hulo, C. Dunand, PeroxiBase: A database with new tools for peroxidase family classification, Nucleic Acids Res. 37 (2009). https://doi.org/10.1093/nar/gkn680.

  40. Y. Tokiwa, B.P. Calabia, C.U. Ugwu, S. Aiba, Biodegradability of plastics, Int. J. Mol. Sci. 10 (2009). https://doi.org/10.3390/ijms10093722.

  41. F. Islam, N. Roy, Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses, BMC Res. Notes. 11 (2018). https://doi.org/10.1186/s13104-018-3558-4.

  42. O.L. Tavano, A. Berenguer-Murcia, F. Secundo, R. Fernandez-Lafuente, Biotechnological Applications of Proteases in Food Technology, Compr. Rev. Food Sci. Food Saf. 17 (2018). https://doi.org/10.1111/1541-4337.12326.

  43. S. Das, H.R. Dash, Microbial Bioremediation: A Potential Tool for Restoration of Contaminated Areas, in: Microb. Biodegrad. Bioremediation, 2014. https://doi.org/10.1016/B978-0-12-800021-2.00001-7.

  44. K.L.G. Ho, A.L. Pometto, P.N. Hinz, Effects of temperature and relative humidity on polylactic acid plastic degradation, J. Environ. Polym. Degrad. 7 (1999). https://doi.org/10.1023/A:1021808317416.

  45. S. B. Eskander, H. M. Saleh, Biodegradation : Process Mechanism, Biodegrad. Bioremediat. 8 (2017).

    Google Scholar 

  46. S. Nwachukwu, O. Obidi, C. Odocha, Occurrence and recalcitrance of polyethylene bag waste in Nigerian soils, African J. Biotechnol. 9 (2010). https://doi.org/10.4314/ajb.v9i37.

  47. L. Lin, Y. Lee, H.E. Park, Erratum: Recycling and rheology of poly(lactic acid) (PLA) to make foams using supercritical fluid (Phys. Fluids (2021) 33 (067119) https://doi.org/10.1063/5.0050649), Phys. Fluids. 33 (2021). https://doi.org/10.1063/5.0062586.

  48. E. King, S. Robinson, R.E. Cameron, Effect of hydrolytic degradation on the microstructure of quenched, amorphous poly(glycolic acid): An X-ray scattering study of hydrated samples, Polym. Int. 48 (1999). https://doi.org/10.1002/(sici)1097-0126(199909)48:9<915::aid-pi245>3.0.co;2-c.

  49. S.J. Varjani, V.N. Upasani, Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514, Bioresour. Technol. 220 (2016). https://doi.org/10.1016/j.biortech.2016.08.060.

  50. H. Li, S. Chen, B.Z. Mu, J.D. Gu, Molecular detection of anaerobic ammonium-oxidizing (Anammox) bacteria in high-temperature petroleum reservoirs, Microb. Ecol. 60 (2010). https://doi.org/10.1007/s00248-010-9733-3.

  51. M. Megharaj, B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, R. Naidu, Bioremediation approaches for organic pollutants: A critical perspective, Environ. Int. 37 (2011). https://doi.org/10.1016/j.envint.2011.06.003.

  52. D. Danso, C. Schmeisser, J. Chow, W. Zimmermann, R. Wei, C. Leggewie, X. Li, T. Hazen, W.R. Streit, New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes, Appl. Environ. Microbiol. 84 (2018). https://doi.org/10.1128/AEM.02773-17.

  53. A. Vedrtnam, S. Kumar, S. Chaturvedi, Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites, Compos. Part B Eng. 176 (2019). https://doi.org/10.1016/j.compositesb.2019.107282.

  54. D. Jendrossek, Microbial degradation of polyesters: A review on extracellular poly(hydroxy alkanoic acid) depolymerases, Polym. Degrad. Stab. 59 (1998). https://doi.org/10.1016/s0141-3910(97)00190-0.

  55. J. Aislabie, D.J. Saul, J.M. Foght, Bioremediation of hydrocarbon-contaminated polar soils, Extremophiles. 10 (2006). https://doi.org/10.1007/s00792-005-0498-4.

  56. A.Y. Zekri, O. Chaalal, Effect of temperature on biodegradation of crude oil, Energy Sources. 27 (2005). https://doi.org/10.1080/00908310490448299.

  57. P. Dvořák, P.I. Nikel, J. Damborský, V. de Lorenzo, Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology, Biotechnol. Adv. 35 (2017). https://doi.org/10.1016/j.biotechadv.2017.08.001.

  58. S. Oberbeckmann, M. Labrenz, Marine Microbial Assemblages on Microplastics: Diversity, Adaptation, and Role in Degradation, Ann. Rev. Mar. Sci. 12 (2020). https://doi.org/10.1146/annurev-marine-010419-010633.

  59. S. Kumar, M.P. Das, L. Jeyanthi Rebecca, S. Sharmila, Isolation and identification of LDPE degrading fungi from municipal solid waste, J. Chem. Pharm. Res. 5 (2013).

    Google Scholar 

  60. J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Deliv. Rev. 64 (2012). https://doi.org/10.1016/j.addr.2012.09.004.

  61. A.N. Boyandin, S. V. Prudnikova, V.A. Karpov, V.N. Ivonin, N.L. Dá»—, T.H. Nguyá»…n, T.M.H. LĂŞ, N.L. Filichev, A.L. Levin, M.L. Filipenko, T.G. Volova, I.I. Gitelson, Microbial degradation of polyhydroxyalkanoates in tropical soils, Int. Biodeterior. Biodegrad. 83 (2013). https://doi.org/10.1016/j.ibiod.2013.04.014.

  62. Y. Tezuka, N. Ishii, K.I. Kasuya, H. Mitomo, Degradation of poly(ethylene succinate) by mesophilic bacteria, Polym. Degrad. Stab. 84 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.09.018.

  63. J.G. Sanchez, A. Tsuchii, Y. Tokiwa, Degradation of polycaprolactone at 50 °C by a thermotolerant Aspergillus sp., Biotechnol. Lett. 22 (2000). https://doi.org/10.1023/A:1005603112688.

  64. Y. Huang, W.J. Chen, J. Li, M.A. Ghorab, N. Alansary, D.E. El-Hefny, G.S. El-Sayyad, S. Mishra, X. Zhang, P. Bhatt, S. Chen, Novel mechanism and degradation kinetics of allethrin using Bacillus megaterium strain HLJ7 in contaminated soil/water environments, Environ. Res. 214 (2022). https://doi.org/10.1016/j.envres.2022.113940.

  65. Y. Huang, L. **ao, F. Li, M. **ao, D. Lin, X. Long, Z. Wu, Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review, Molecules. 23 (2018). https://doi.org/10.3390/molecules23092313.

  66. C. Sasikala, S. Jiwal, P. Rout, M. Ramya, Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil, World J. Microbiol. Biotechnol. 28 (2012). https://doi.org/10.1007/s11274-011-0879-z.

  67. J.P. Verma, D.K. Jaiswal, R. Sagar, Pesticide relevance and their microbial degradation: a-state-of-art, Rev. Environ. Sci. Biotechnol. 13 (2014). https://doi.org/10.1007/s11157-014-9341-7.

  68. X. Li, J. He, S. Li, Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene, Res. Microbiol. 158 (2007). https://doi.org/10.1016/j.resmic.2006.11.007.

  69. S. Anwar, F. Liaquat, Q.M. Khan, Z.M. Khalid, S. Iqbal, Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1, J. Hazard. Mater. 168 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.059.

  70. S.E. Agarry, O.A. Olu-Arotiowa, M.O. Aremu, L.A. Jimoda, Biodegradation of Dichlorovos (Organophosphate Pesticide) in Soil by Bacterial Isolates, J. Nat. Sci. Res. 3 (2013).

    Google Scholar 

  71. S. Desaint, A. Hartmann, N.R. Parekh, J.C. Fournier, Genetic diversity of carbofuran-degrading soil bacteria, FEMS Microbiol. Ecol. 34 (2000). https://doi.org/10.1016/S0168-6496(00)00092-1.

  72. J. Tang, B. Liu, Y. Shi, C. yi Zeng, T. ting Chen, L. Zeng, Q. Zhang, Isolation, identification, and fenvalerate-degrading potential of Bacillus licheniformis CY-012, Biotechnol. Biotechnol. Equip. 32 (2018). https://doi.org/10.1080/13102818.2018.1438210.

  73. H. Zhan, H. Wang, L. Liao, Y. Feng, X. Fan, L. Zhang, S. Chen, Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14, Front. Microbiol. 9 (2018). https://doi.org/10.3389/fmicb.2018.00098.

  74. J. Tang, B. Liu, T. Ting Chen, K. Yao, L. Zeng, C. Yi Zeng, Q. Zhang, Screening of a beta-cypermethrin-degrading bacterial strain Brevibacillus parabrevis BCP-09 and its biochemical degradation pathway, Biodegradation. 29 (2018). https://doi.org/10.1007/s10532-018-9850-0.

  75. S.N. Ortega, M. Nitschke, A.M. Mouad, M.D. Landgraf, M.O.O. Rezende, M.H.R. Seleghim, L.D. Sette, A.L.M. Porto, Isolation of Brazilian marine fungi capable of growing on DDD pesticide, Biodegradation. 22 (2011). https://doi.org/10.1007/s10532-010-9374-8.

  76. O. Bordjiba, R. Steiman, M. Kadri, A. Semadi, P. Guiraud, Removal of Herbicides from Liquid Media by Fungi Isolated from a Contaminated Soil, J. Environ. Qual. 30 (2001). https://doi.org/10.2134/jeq2001.302418x.

  77. C.W. Yang, C. Liu, B.V. Chang, Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge, Water (Switzerland). 12 (2020). https://doi.org/10.3390/W12082147.

  78. J. Boonnorat, A. Kanyatrakul, A. Prakhongsak, R. Honda, P. Panichnumsin, N. Boonapatcharoen, Effect of hydraulic retention time on micropollutant biodegradation in activated sludge system augmented with acclimatized sludge treating low-micropollutants wastewater, Chemosphere. 230 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.039.

  79. B.V. Chang, S.N. Fan, Y.C. Tsai, Y.L. Chung, P.X. Tu, C.W. Yang, Removal of emerging contaminants using spent mushroom compost, Sci. Total Environ. 634 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.366.

  80. F. Nnenna, P. Lekiah, O. Obemeata, P. Harcourt, P. Harcourt, R. State, Degradation of antibiotics by bacteria and fungi from the aquatic environment, J. Toxicol. Environ. Heal. Sci. 3 (2011).

    Google Scholar 

  81. W.F. Khalil, G.S. El-Sayyad, W.M.A. El Rouby, M.A. Sadek, A.A. Farghali, A.I. El-Batal, Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria, Int. J. Biol. Macromol. 164 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.205.

  82. V.M. Pathak, N. Kumar, Implications of SiO2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of Bacillus, Pseudomonas, and their synergistic effect on Vigna mungo growth, Energy, Ecol. Environ. 2017 26. 2 (2017) 418–427. https://doi.org/10.1007/S40974-017-0068-5.

  83. A. Sah, A. Kapri, M.G.H. Zaidi, H. Negi, R. Goel, Implications of fullerene-60 upon in-vitro LDPE biodegradation, J. Microbiol. Biotechnol. 20 (2010). https://doi.org/10.4014/jmb.0910.10025.

  84. A. Kapri, M.G.H. Zaidi, R. Goel, Implications of SPION and NBT nanoparticles upon In Vitro and In Situ biodegradation of LDPE film, J. Microbiol. Biotechnol. 20 (2010). https://doi.org/10.4014/jmb.0912.12026.

  85. H. Dong, L. Li, Y. Lu, Y. Cheng, Y. Wang, Q. Ning, B. Wang, L. Zhang, G. Zeng, Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review, Environ. Int. 124 (2019). https://doi.org/10.1016/j.envint.2019.01.030.

  86. Y.M. Kim, K. Murugesan, Y.Y. Chang, E.J. Kim, Y.S. Chang, Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation, J. Chem. Technol. Biotechnol. 87 (2012). https://doi.org/10.1002/jctb.2699.

  87. A. Kapri, M.G.H. Zaidi, A. Satlewal, R. Goel, SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium, Int. Biodeterior. Biodegrad. 64 (2010). https://doi.org/10.1016/j.ibiod.2010.02.002.

  88. H. Khatoon, J.P.N. Rai, Augmentation of Atrazine biodegradation by two Bacilli immobilized on α-Fe2O3 magnetic nanoparticles, Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-36296-1.

  89. M. Amir, U. Kurtan, A. Baykal, Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst, J. Ind. Eng. Chem. 27 (2015). https://doi.org/10.1016/j.jiec.2015.01.013.

  90. R.A. Pereira, M.F.R. Pereira, M.M. Alves, L. Pereira, Carbon based materials as novel redox mediators for dye wastewater biodegradation, Appl. Catal. B Environ. 144 (2014). https://doi.org/10.1016/j.apcatb.2013.07.009.

  91. E. Fosso-Kankeu, A.F. Mulaba-Bafubiandi, A.K. Mishra, Prospects for Immobilization of Microbial Sorbents on Carbon Nanotubes for Biosorption: Bioremediation of Heavy Metals Polluted Water, in: Appl. Nanotechnol. Water Res., 2014. https://doi.org/10.1002/9781118939314.ch3.

  92. X. Wang, J. Pu, Y. Liu, F. Ba, M. Cui, K. Li, Y. **e, Y. Nie, Q. Mi, T. Li, L. Liu, M. Zhu, C. Zhong, Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications, Natl. Sci. Rev. 6 (2019). https://doi.org/10.1093/nsr/nwz104.

  93. J. Liu, E. Morales-Narváez, T. Vicent, A. Merkoçi, G.H. Zhong, Microorganism-decorated nanocellulose for efficient diuron removal, Chem. Eng. J. 354 (2018). https://doi.org/10.1016/j.cej.2018.08.035.

  94. S. Kato, K. Hashimoto, K. Watanabe, Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals, Environ. Microbiol. 14 (2012). https://doi.org/10.1111/j.1462-2920.2011.02611.x.

  95. F. Aulenta, S. Rossetti, S. Amalfitano, M. Majone, V. Tandoi, Conductive magnetite nanoparticles accelerate the microbial reductive dechlorination of trichloroethene by promoting interspecies electron transfer processes, ChemSusChem. 6 (2013). https://doi.org/10.1002/cssc.201200748.

  96. Z. Yang, X. Xu, M. Dai, L. Wang, X. Shi, R. Guo, Accelerated ciprofloxacin biodegradation in the presence of magnetite nanoparticles, Chemosphere. 188 (2017). https://doi.org/10.1016/j.chemosphere.2017.08.159.

  97. M.I. Al-Zaban, M.A. Mahmoud, M.A. Alharbi, A.M. Bahatheq, Bioremediation of crude oil by rhizosphere fungal isolates in the presence of silver nanoparticles, Int. J. Environ. Res. Public Health. 17 (2020). https://doi.org/10.3390/ijerph17186564.

  98. E. Topp, W.M. Mulbry, H. Zhu, S.M. Nour, D. Cuppels, Characterization of S-Triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils, Appl. Environ. Microbiol. 66 (2000). https://doi.org/10.1128/AEM.66.8.3134-3141.2000.

  99. S. Rathore, P.M. Desai, C.V. Liew, L.W. Chan, P.W.S. Heng, Microencapsulation of microbial cells, J. Food Eng. 116 (2013). https://doi.org/10.1016/j.jfoodeng.2012.12.022.

  100. X. Wang, Z. Gai, B. Yu, J. Feng, C. Xu, Y. Yuan, Z. Lin, P. Xu, Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads, Appl. Environ. Microbiol. 73 (2007). https://doi.org/10.1128/AEM.01051-07.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gharieb S. El-Sayyad or Waleed M. A. El Rouby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Husseiny, S., Elgiddawy, N., El-Sayyad, G.S., El Rouby, W.M.A. (2023). Recent Advances in Microbial Biodegradation. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_3

Download citation

Publish with us

Policies and ethics

Navigation