Prognostic Biomarkers to Predict Outcomes in Trauma

  • Reference work entry
  • First Online:
Biomarkers in Trauma, Injury and Critical Care

Abstract

Traumatic injury accounts for significant morbidity and mortality across all age groups. Unlike other diseases, the onset of injury is known and therefore trauma is well poised as an ideal disease entity for the development and use of predictive biomarkers. In this chapter, we describe biomarkers that have been used for or show promise for prognostication following traumatic injury. This chapter begins with a brief report on prognostic biomarkers specific to traumatic brain injury and goes on to describe several classes of biomarkers in polytrauma including cytokines, genomics, endothelial damage markers, and damage-associated molecular patternĀ molecules. Throughout the chapter, we make the important distinction between correlative biomarkers, which inform hypotheses and guide prospective experiments, and true predictive biomarkers established through rigorous testing and modeling. We close the chapter with recent work utilizing multi-omic and machine learning strategies which show great promise in the identification and utilization of predictive biomarkers following traumatic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACIT2:

activation of coagulation and inflammation in trauma

AKI:

acute kidney injury

Ang-1:

angiopoietin-1

Ang-2:

angiopoietin-2

AUC:

area under the curve

AUROC:

area under the receiver operative characteristic curve

CAR:

CRP to albumin ratio

CRP:

C-reactive protein

CST5:

Cystatin D

DAMPs:

damage-associated molecular patterns

GCS:

Glasgow-Coma score

GCSF:

granulocyte colony-stimulating factor

GFAP:

glial fibrillary acidic protein

HMGB1:

high-mobility group box 1

HSP70:

heat-shock protein 70

ICU:

intensive care unit

IFN:

interferon

IL-10:

interleukin-10

IL17A:

interleukin-17A

IL-2:

interleukin-2

IL-33:

interleukin-33

IL-5:

interleukin-5

IL-6:

interleukin-6

IL-7:

interleukin-7

IL-8:

interleukin-8

ISS:

injury severity score

LOS:

length of stay

LRS:

lipid reprogramming score

MCP-1:

monocyte chemoattractant protein-1

MHCII:

major histocompatibility complex

MIP-1a:

macrophage inflammatory protein-1 alpha

MODS:

multiple organ dysfunction syndrome

MOF:

multiorgan failure

MPPED2:

metallophosphoesterase domain-containing 2

mtDNA:

mitochondrial DNA

NAA:

N-acetylaspartate

NETs:

neutrophil extracellular traps

OR:

odds ratio

PAMPer:

The Prehospital Air Medical Plasma trial

PCA:

principal component analysis

PE:

phosphatidylethanolamine

RAGE:

receptor for advanced glycation end products

ROC:

receiver operating characteristic

SIRS:

systemic inflammatory response syndrome

SNPs:

single nucleotide polymorphisms

SOFA:

sequential organ failure assessment

SSI:

surgical site infection

sST2:

soluble suppressor of tumorigenesis-2

TBI:

traumatic brain injury

Th17:

T-helper 17

TLR:

toll-like receptor

UCH-L1:

ubiquitin C-terminal hydrolase

UCLH1:

ubiquitin carboxy-terminal hydrolase L1

VEGF:

vascular endothelial growth factor

WBC:

white blood cell

References

  • Abboud A, et al. Computational analysis supports an early, type 17 cell-associated divergence of blunt trauma survival and mortality. Crit Care Med. 2016;44(11):e1074ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Abrams ST, et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Almahmoud K, et al. Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS One. 2019;14(6):e0217577.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Alzghoul L, et al. The association between levels of inflammatory markers in autistic children compared to their unaffected siblings and unrelated healthy controls. Turk J Med Sci. 2019;49(4):1047ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Antunes AA, et al. Interleukin-6 plasmatic levels in patients with head trauma and intracerebral hemorrhage. Asian J Neurosurg. 2010;5(1):68ā€“77.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bellazzi R, Diomidous M, Sarkar IN, Takabayashi K, Ziegler A, McCray AT. Data analysis and data mining: current issues in biomedical informatics. Methods Inf Med. 2011;50(6):536ā€“44. https://doi.org/10.3414/ME11-06-0002. PMID: 22146916; PMCID: PMC3233983.

  • Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008;77(2):81ā€“97. https://doi.org/10.1016/j.ijmedinf.2006.11.006. Epub 2006 Dec 26. PMID: 17188928.

  • Biffl WL, et al. Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg. 1996;224(5):647ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Billiar IM, et al. Elevations in circulating sST2 levels are associated with in-hospital mortality and adverse clinical outcomes after blunt trauma. J Surg Res. 2019;244:23ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bonaroti J, Abdelhamid S, Kar U, Sperry J, Zamora R, Namas RA, McKinley T, Vodovotz Y, Billiar T. The Use of Multiplexing to Identify Cytokine and Chemokine Networks in the Immune-Inflammatory Response to Trauma. Antioxid Redox Signal. 2021;35(16):1393ā€“1406. https://doi.org/10.1089/ars.2021.0054. Epub 2021 May 19. PMID: 33860683; PMCID: PMC8905234.

  • Cabrera CP, et al. Signatures of inflammation and impending multiple organ dysfunction in the hyperacute phase of trauma: a prospective cohort study. PLoS Med. 2017;14(7):e1002352.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cai J, McKinley T, Billiar I, Zenati MS, Gaski G, Vodovotz Y, Gruen DS, Billiar TR, Namas RA. Protective/reparative cytokines are suppressed at high injury severity in human trauma. Trauma Surg Acute Care Open. 2021 Mar 2;6(1):e000619. https://doi.org/10.1136/tsaco-2020-000619. PMID: 33748428; PMCID: PMC7929818.

  • Centers for Disease Control and Prevention, Multiple Cause of Death Data on CDC WONDER. 2021a. Available at: https://wonder.cdc.gov/mcd.html. Accessed 17 Nov, 2021.

  • Centers for Disease Control and Prevention, Report to Congress: Traumatic Brain Injury in the United States | Concussion | Traumatic Brain Injury | CDC Injury Center. 2021b. Available at: https://www.cdc.gov/traumaticbraininjury/pubs/tbi_report_to_congress.html. Accessed November 16, 2021.

  • Chen T, Delano MJ, Chen K, Sperry JL, Namas RA, Lamparello AJ, Deng M, Conroy J, Moldawer LL, Efron PA, Loughran P, Seymour C, Angus DC, Vodovotz Y, Chen W, Billiar TR. A road map from single-cell transcriptome to patient classification for the immune response to trauma. JCI Insight. 2021;6(2):e145108. https://doi.org/10.1172/jci.insight.145108. PMID: 33320841; PMCID: PMC7934885.

  • Chignalia AZ, et al. The glycocalyx and trauma: a review. Shock. 2016;45(4):338ā€“48.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cohan CM, Beattie G, Tang A, Mazzolini K, Victorino GP. Early Monocyte Chemoattractant Protein-1 Elevation Predicts Surgical Site Infections after Blunt Trauma. Surg Infect (Larchmt). 2021;22(7):690ā€“696. https://doi.org/10.1089/sur.2020.141. Epub 2020 Dec 28. PMID: 33370546.

  • Cohen MJ, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13(6):R174.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cuenca AG, et al. Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients. Crit Care Med. 2013;41(5):1175ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cyr A, et al. Analysis of the plasma metabolome after trauma, novel circulating sphingolipid signatures, and in-hospital outcomes. J Am Coll Surg. 2021;232(3):276ā€“287.e1.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • da Rocha AB, et al. Serum Hsp70 as an early predictor of fatal outcome after severe traumatic brain injury in males. J Neurotrauma. 2005;22(9):966ā€“77.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • DeLong WG, Born CT. Cytokines in patients with polytrauma. Clin Orthop Relat Res. 2004;422:57ā€“65.

    ArticleĀ  Google ScholarĀ 

  • Du Clos TW. Function of C-reactive protein. Ann Med. 2000;32(4):274ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Edwards KA, et al. Inflammatory cytokines associate with neuroimaging after acute mild traumatic brain injury. Front Neurol. 2020;11:348.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • FDA-NIH Biomarker Working Group, 2016. Understanding prognostic versus predictive biomarkers.

    Google ScholarĀ 

  • Fink MP. Bench-to-bedside review: high-mobility group box 1 and critical illness. Crit Care. 2007;11(5):229.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ganter MT, et al. Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? Ann Surg. 2008;247(2):320ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Georges A, M Das J. Traumatic brain injury. In: StatPearls. Treasure Island (FL). StatPearls Publishing; 2021.

    Google ScholarĀ 

  • Gruen DS, et al. Association of prehospital plasma with survival in patients with traumatic brain injury: a secondary analysis of the pamper cluster randomized clinical trial. JAMA Netw Open. 2020;3(10):e2016869.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Guisasola MC, et al. An overview of cytokines and heat shock response in polytraumatized patients. Cell Stress Chaperones. 2018;23(4):483ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hatton GE, et al. Endothelial dysfunction is associated with increased incidence, worsened severity, and prolonged duration of acute kidney injury after severe trauma. Shock. 2021;55(3):311ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hazeldine J, Naumann DN, Toman E, Davies D, Bishop JRB, Su Z, Hampson P, Dinsdale RJ, Crombie N, Duggal NA, Harrison P, Belli A, Lord JM. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. PLoS Med. 2017;14(7):e1002338. https://doi.org/10.1371/journal.pmed.1002338. PMID: 28719602; PMCID: PMC5515405.

  • Hergenroeder GW, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflammation. 2010;7:19.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hill LJ, et al. Cystatin D (CST5): an ultra-early inflammatory biomarker of traumatic brain injury. Sci Rep. 2017;7(1):5002.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Honarmand A, Safavi M. Do C-reactive protein and body mass index predict duration of mechanical ventilation in critically ill trauma patients? Ulus Travma ve Acil Cerrahi Derg = Turkish J Trauma Emerg Surg: TJTES. 2008;14(4):284ā€“91.

    Google ScholarĀ 

  • Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huebschmann NA, et al. Comparing glial fibrillary acidic protein (GFAP) in serum and plasma following mild traumatic brain injury in older adults. Front Neurol. 2020;11:1054.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Johansson PI, et al. High circulating adrenaline levels at admission predict increased mortality after trauma. The journal of trauma and acute care surgery. 2012;72(2):428ā€“36.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Johansson PI, et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann Surg. 2017;265(3):597ā€“603.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kim CH, et al. Stability and reproducibility of proteomic profiles measured with an aptamer-based platform. Sci Rep. 2018;8(1):8382.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Krassowski M, et al. State of the field in multi-omics research: from computational needs to data mining and sharing. Front Genet. 2020;11:610798.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lam NYL, et al. Plasma mitochondrial DNA concentrations after trauma. Clin Chem. 2004;50(1):213ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lamparello AJ, Namas RA, Constantine G, McKinley TO, Elster E, Vodovotz Y, Billiar TR. A conceptual time window-based model for the early stratification of trauma patients. J Intern Med. 2019;286(1):2ā€“15. https://doi.org/10.1111/joim.12874. Epub 2019 Jan 9. PMID: 30623510.

  • Langley RJ, Wong HR. Early diagnosis of sepsis: is an integrated omics approach the way forward? Mol Diagn Ther. 2017;21(5):525ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Levy RM, et al. Systemic inflammation and remote organ damage following bilateral femur fracture requires toll-like receptor 4. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R970ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Levy RM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1538ā€“44.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu X, Ren H, Peng D. Sepsis biomarkers: an omics perspective. Front Med. 2014;8(1):58ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • McKinley TO, Gaski GE, Zamora R, Shen L, Sun Q, Namas RA, Billiar TR, Vodovotz Y. Early dynamic orchestration of immunologic mediators identifies multiply injured patients who are tolerant or sensitive to hemorrhage. J Trauma Acute Care Surg. 2021;90(3):441ā€“450. https://doi.org/10.1097/TA.0000000000002998. PMID: 33093290.

  • Mƶrs K, et al. Influence of gender on systemic IL-6 levels, complication rates and outcome after major trauma. Immunobiology. 2016;221(8):904ā€“10.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mozaffari K, et al. Systematic review of serum biomarkers in traumatic brain injury. Cureus. 2021;13(8):e17056.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Namas RA, Almahmoud K, et al. Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. J Crit Care. 2016a;36:146ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Namas RA, Vodovotz Y, et al. Temporal patterns of circulating inflammation biomarker networks differentiate susceptibility to nosocomial infection following blunt trauma in humans. Ann Surg. 2016b;263(1):191ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Nieuwdorp M, et al. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol. 2005;16(5):507ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Osier ND, et al. Elevated cerebrospinal fluid concentrations of N-acetylaspartate correlate with poor outcome in a pilot study of severe brain trauma. Brain Inj. 2019;33(10):1364ā€“71.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Osuka A, et al. Immune response to traumatic injury: harmony and discordance of immune system homeostasis. Acute Med Surg. 2014;1(2):63ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Qiao Z, et al. Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: a meta-analysis. Eur JĀ TraumaĀ Emerg Surg. 2018;44(5):679ā€“87.

    PubMedĀ  Google ScholarĀ 

  • Raymond SL, et al. Prospective validation of a transcriptomic metric in severe trauma. Ann Surg. 2020;271(5):802ā€“10.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Reinhart K, et al. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med. 2002;30(5 Suppl):S302ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ren B, et al. Serum levels of HSP70 and other DAMP proteins can aid in patient diagnosis after traumatic injury. Cell Stress Chaperones. 2016;21(4):677ā€“86.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Schimunek L, et al. An enrichment strategy yields seven novel single nucleotide polymorphisms associated with mortality and altered th17 responses following blunt trauma. Shock. 2018;49(3):259ā€“68.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Schimunek L, et al. MPPED2 polymorphism is associated with altered systemic inflammation and adverse trauma outcomes. Front Genet. 2019;10:1115.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Simmons JD, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg. 2013;258(4):591ā€“6. discussion 596

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Song J, et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. BMC Infect Dis. 2019;19(1):968.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sperry JL, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med. 2018;379(4):315ā€“26.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Su S-H, et al. Elevated C-reactive protein levels may be a predictor of persistent unfavourable symptoms in patients with mild traumatic brain injury: a preliminary study. Brain Behav Immun. 2014;38:111ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Subramanian I, et al. Multi-omics data integration, interpretation, and its application. Bioinform.Ā Biol.Ā Insights. 2020;14:1177932219899051.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Szatmary P, et al. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med. 2018;22(10):4617ā€“29.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Timmermans K, et al. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med. 2016;42(4):551ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tompkins RG. Genomics of injury: the glue Grant experience. JĀ Trauma Acute Care Surg. 2015;78(4):671ā€“86.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tsukamoto T, Chanthaphavong RS, Pape H-C. Current theories on the pathophysiology of multiple organ failure after trauma. Injury. 2010;41(1):21ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wafaisade A, et al. Epidemiology and risk factors of sepsis after multiple trauma: an analysis of 29,829 patients from the trauma registry of the German Society for Trauma Surgery. Crit Care Med. 2011;39(4):621ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wang K-Y, et al. Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury. Clin Chim Acta. 2012;413(21ā€“22):1737ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang R, et al. CRP albumin ratio is positively associated with poor outcome in patients with traumatic brain injury. Clin Neurol Neurosurg. 2020;195:106051.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wu J, Cyr A, et al. Lipidomic signatures align with inflammatory patterns and outcomes in critical illness. Res Sq. 2021a.

    Google ScholarĀ 

  • Wu J, Vodovotz Y, Abdelhamid S, Guyette FX, Yaffe MB, Gruen DS, Cyr A, Okonkwo DO, Kar UK, Krishnamoorthi N, Voinchet RG, Billiar IM, Yazer MH, Namas RA, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Zuckerbraun BS, Johansson PI, Stensballe J, Morrissey JH, Tracy RP, Wisniewski SR, Neal MD, Sperry JL, Billiar TR; PAMPer study group. Multi-omic analysis in injured humans: Patterns align with outcomes and treatment responses. Cell Rep Med. 2021b;2(12):100478. https://doi.org/10.1016/j.xcrm.2021.100478. PMID: 35028617; PMCID: PMC8715070.

  • Wu J, Vodovotz Y, Abdelhamid S, Guyette FX, Yaffe MB, et al. Multi-omic analysis in injured humans: patterns align with outcomes and treatment responses. Cell Rep Med. 2021c;2(12):100478.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • **ao W, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yamamoto R, et al. Accuracy for mortality prediction with additive biomarkers including interleukin-6 in critically ill patients: a multicenter prospective observational study. Crit Care Explor. 2021;3(4):e0387.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yamanouchi S, et al. Plasma mitochondrial DNA levels in patients with trauma and severe sepsis: time course and the association with clinical status. J Crit Care. 2013;28(6):1027ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang R, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med. 2006;12(4ā€“6):105ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang Q, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang Y, et al. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock. Shock. 2014;42(3):218ā€“27.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • ZĆ¼gel U, Kaufmann SH. Immune response against heat shock proteins in infectious diseases. Immunobiology. 1999;201(1):22ā€“35.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Billiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bonaroti, J., Li, S., Abdelhamid, S., Billiar, T. (2023). Prognostic Biomarkers to Predict Outcomes in Trauma. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Biomarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-07395-3_8

Download citation

Publish with us

Policies and ethics

Navigation