Triboelectric Nanogenerator for Particle Filtering

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 152 Accesses

Abstract

Particle filtering is the most important aspect of addressing the global air pollution issue and contributing to a sustainable society. Fibrous filter and electrostatic precipitator (ESP) are the most commonly employed technologies. However, the fibrous filter is always dense to achieve a high filtration efficiency, which is power consumption, and ESPs need a high-voltage supply, face safety issue, and produce ozone, which largely limit their application diversity. Researchers have noticed that various types of mechanical energy, e.g., airflow, vibration, body movement, etc., exist during the particle filtering process. Through structure and material design, these mechanical movements generate electrostatic charges on the filter materials via triboelectrification effect (TE), which would improve the total filtration performance of the fibrous filter. Furthermore, based on triboelectrification and electrostatic induction, the emerging triboelectric nanogenerator (TENG) technology can convert these energies into high-voltage output directly for ESP applications, with the advantages of low cost, portable, high efficiency, safe, no ozone emission, etc. Therefore, in this chapter, the traditional fibrous filter and ESP for particle filtering, the mechanism and strategies of utilizing triboelectric charges and TENG for enhancing their filtration performance, and the examples of this technology in extending application diversity are systematically presented. Finally, the perspectives and challenges for the commercialization of TENG-based particle filters are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bai Y, Han CB, He C, Gu GQ, Nie JH, Shao JJ, **ao TX, Deng CR, Wang ZL (2018) Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv Funct Mater 28(15):1706680

    Article  Google Scholar 

  • Chen P-S, Tsai Feng T, Lin Chien K, Yang C-Y, Chan C-C, Young C-Y, Lee C-H (2010) Ambient influenza and avian influenza virus during dust storm days and background days. Environ Health Perspect 118(9):1211–1216

    Article  CAS  Google Scholar 

  • Chen S, Gao C, Tang W, Zhu H, Han Y, Jiang Q, Li T, Cao X, Wang ZL (2015) Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14:217–225

    Article  CAS  Google Scholar 

  • Chen D, Hao S, Xu C, Liu L, Zhao L, Hong H, Xu W, Tang Q, Du X, Yang X (2022) In-situ high-efficiency PM capture from motor vehicle exhaust based on self-powered ceramic porous triboelectric filter. Nano Energy 96:107107

    Article  CAS  Google Scholar 

  • Cheng J, Ding W, Zi Y, Lu Y, Ji L, Liu F, Wu C, Wang ZL (2018) Triboelectric microplasma powered by mechanical stimuli. Nat Commun 9(1):3733

    Article  Google Scholar 

  • Cho M, Hiremath V, Seo JG (2021) Triboelectrification-based particulate matter capture utilizing electrospun ethyl cellulose and PTFE spheres. Atmospheric Environ X 12:100138

    Article  CAS  Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334

    Article  CAS  Google Scholar 

  • Fang H, Yuan D, Guo R, Zhang S, Han RPS, Das S, Wang ZL (2011) Fabrication of patterned polymer nanowire arrays. ACS Nano 5(2):1476–1482

    Article  CAS  Google Scholar 

  • Ghatak B, Banerjee S, Ali SB, Bandyopadhyay R, Das N, Mandal D, Tudu B (2021) Design of a self-powered triboelectric face mask. Nano Energy 79:105387

    Article  CAS  Google Scholar 

  • Gu GQ, Han CB, Lu CX, He C, Jiang T, Gao ZL, Li CJ, Wang ZL (2017) Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 11(6):6211–6217

    Article  CAS  Google Scholar 

  • Guo H, Chen J, Wang L, Wang AC, Li Y, An C, He J-H, Hu C, Hsiao VKS, Wang ZL (2021) A highly efficient triboelectric negative air ion generator. Nat Sustain 4(2):147–153

    Article  Google Scholar 

  • Han CB, Jiang T, Zhang C, Li X, Zhang C, Cao X, Wang ZL (2015) Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 9(12):12552–12561

    Article  CAS  Google Scholar 

  • Han KS, Lee S, Kim M, Park P, Lee MH, Nah J (2019) Electrically activated ultrathin PVDF-TrFE air filter for high-efficiency PM1.0 filtration. Adv Funct Mater 29(37):1903633

    Article  Google Scholar 

  • Hao R, Yang S, Yang K, Zhang Z, Wang T, Sang S, Zhang H (2021) Self-powered air filter based on an electrospun respiratory triboelectric nanogenerator. ACS Appl Energy Mater 4(12):14700–14708

    Article  CAS  Google Scholar 

  • Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs H, Bröcker-Preuss M, Führer-Sakel D, Möhlenkamp S, Erbel R, Jöckel K-H, Hoffmann B (2014) Association between source-specific particulate matter air pollution and hs-CRP: local traffic and industrial emissions. Environ Health Perspect 122(7):703–710

    Article  CAS  Google Scholar 

  • Hu Y, Wang Y, Tian S, Yu A, Wan L, Zhai J (2021) Performance-enhanced and washable triboelectric air filter based on polyvinylidene fluoride/UiO-66 composite nanofiber membrane. Macromol Mater Eng 306(8):2100128

    Article  CAS  Google Scholar 

  • Hughes JF (1987) Electrostatics: principles, problems and applications. Phys Bull 38(11):424

    Article  Google Scholar 

  • Huo Z-Y, Kim Y-J, Suh I-Y, Lee D-M, Lee JH, Du Y, Wang S, Yoon H-J, Kim S-W (2021) Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat Commun 12(1):3693

    Article  CAS  Google Scholar 

  • Jeong SB, Lee DU, Lee BJ, Heo KJ, Kim DW, Hwang GB, MacRobert AJ, Shin JH, Ko HS, Park SK, Oh YS, Kim SJ, Lee DY, Lee S-B, Park I, Kim SB, Han B, Jung JH, Choi DY (2022) Photobiocidal-triboelectric nanolayer coating of photosensitizer/silica-alumina for reusable and visible-light-driven antibacterial/antiviral air filters. Chem Eng J 440:135830

    Article  CAS  Google Scholar 

  • Jiang S-Y, Ma A, Ramachandran S (2018) Negative air ions and their effects on human health and air quality improvement. Int J Mol Sci 19(10):2966

    Article  Google Scholar 

  • Kang M, Jang N-Y, Kim Y-J, Ro H-J, Kim D, Kim Y, Kim HT, Kwon HM, Ahn J-H, Choi B-O, Cho N-H, Kim S-W (2022) Virus blocking textile for SARS-CoV-2 using human body triboelectric energy harvesting. Cell Rep Phys Sci 3(4):100813

    Article  CAS  Google Scholar 

  • Kim H-J, Yoo S, Chung MH, Yoo K-H, Kim J, Jeong H (2019) Power-free electrostatic collecting film development for purifying indoor air pollution. Nano Energy 65:104034

    Article  CAS  Google Scholar 

  • Kocik M, Dekowski J, Mizeraczyk J (2005) Particle precipitation efficiency in an electrostatic precipitator. J Electrost 63(6):761–766

    Article  Google Scholar 

  • Krueger Albert P, Reed Eddie J (1976) Biological impact of small air ions. Science 193(4259):1209–1213

    Article  Google Scholar 

  • Li A, Zi Y, Guo H, Wang ZL, Fernández FM (2017a) Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat Nanotechnol 12(5):481–487

    Article  CAS  Google Scholar 

  • Li C, Yin Y, Wang B, Zhou T, Wang J, Luo J, Tang W, Cao R, Yuan Z, Li N, Du X, Wang C, Zhao S, Liu Y, Wang ZL (2017b) Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 11(10):10439–10445

    Article  CAS  Google Scholar 

  • Li X, Yin X, Wang W, Zhao H, Liu D, Zhou L, Zhang C, Wang J (2019) Carbon captured from vehicle exhaust by triboelectric particular filter as materials for energy storage. Nano Energy 56:792–798

    Article  CAS  Google Scholar 

  • Lin L, Li Y, Khan M, Sun J, Lin J-M (2018) Real-time characterization of negative air ion-induced decomposition of indoor organic contaminants by mass spectrometry. Chem Commun 54(76):10687

    Article  CAS  Google Scholar 

  • Liu G, Nie J, Han C, Jiang T, Yang Z, Pang Y, Xu L, Guo T, Bu T, Zhang C, Wang ZL (2018) Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator. ACS Appl Mater Interfaces 10(8):7126–7133

    Article  CAS  Google Scholar 

  • Livanova LM, Levshina IP, Nozdracheva LV, Élbakidze MG, Airapetyants MG (1999) The protective effects of negative air ions in acute stress in rats with different typological behavioral characteristics. Neurosci Behav Physiol 29(4):393–395

    Article  CAS  Google Scholar 

  • Luo J, Han K, Wu X, Cai H, Jiang T, Zhou H, Wang ZL (2021) Self-powered mobile sterilization and infection control system. Nano Energy 88:106313

    Article  CAS  Google Scholar 

  • Mizuno A (2000) Electrostatic precipitation. IEEE Trans Dielectr Electr Insul 7(5):615–624

    Article  CAS  Google Scholar 

  • Mo J, Zhang C, Lu Y, Liu Y, Zhang N, Wang S, Nie S (2020) Radial piston triboelectric nanogenerator-enhanced cellulose fiber air filter for self-powered particulate matter removal. Nano Energy 78:105357

    Article  CAS  Google Scholar 

  • Nel A (2005) Air pollution-related illness: effects of particles. Science 308(5723):804–806

    Article  CAS  Google Scholar 

  • Nenna R, Evangelisti M, Frassanito A, Scagnolari C, Pierangeli A, Antonelli G, Nicolai A, Arima S, Moretti C, Papoff P, Villa MP, Midulla F (2017) Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: an observational study. Environ Res 158:188–193

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  Google Scholar 

  • Podgórski A, BaÅ‚azy A, GradoÅ„ L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61(20):6804–6815

    Article  Google Scholar 

  • Pope CA, Dockery DW (2006) Health Effects of Fine Particulate Air Pollution: lines that Connect. J Air Waste Manage Assoc 56(6):709–742

    Article  CAS  Google Scholar 

  • Qu X, Ma X, Shi B, Li H, Zheng L, Wang C, Liu Z, Fan Y, Chen X, Li Z, Wang ZL (2021) Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv Funct Mater 31(5):2006612

    Article  CAS  Google Scholar 

  • Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Östenson C-G, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Sørensen M, Tjønneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai M-Y, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14(9):813–822

    Article  Google Scholar 

  • Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, Palmisani J, Di Gilio A, Torboli V, Fontana F, Clemente L, Pallavicini A, Ruscio M, Piscitelli P, Miani A (2020) SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ Res 188:109754

    Article  CAS  Google Scholar 

  • Shao Z, Jiang J, Wang X, Li W, Fang L, Zheng G (2020) Self-powered electrospun composite nanofiber membrane for highly efficient air filtration. Nanomaterials 10(9):1706

    Article  CAS  Google Scholar 

  • Skalny JD, Orszagh J, Mason NJ, Rees JA, Aranda-Gonzalvo Y, Whitmore TD (2008) Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int J Mass Spectrom 272(1):12–21

    Article  CAS  Google Scholar 

  • Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z (2004) The air-borne particulate pollution in Bei**g-concentration, composition, distribution and sources. Atmos Environ 38(35):5991–6004

    Article  CAS  Google Scholar 

  • Sun J, Zhang L, Li Z, Tang Q, Chen J, Huang Y, Hu C, Guo H, Peng Y, Wang ZL (2021) A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv Mater 33(34):2102765

    Article  CAS  Google Scholar 

  • Thurston GD, Ito K, Lall R (2011) A source apportionment of U.S. fine particulate matter air pollution. Atmos Environ 45(24):3924–3936

    Article  CAS  Google Scholar 

  • Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR, Heinrich J, Hoek G, Lanki T, Peters A, Tarkiainen T, Tiittanen P, Kreyling W, Pekkanen J (2006) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Sci Environ Epidemiol 16(4):332–341

    Article  CAS  Google Scholar 

  • Vandini S, Corvaglia L, Alessandroni R, Aquilano G, Marsico C, Spinelli M, Lanari M, Faldella G (2013) Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants. Ital J Pediatr 39(1):1

    Article  Google Scholar 

  • Wang C-S, Otani Y (2013) Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res 52(1):5–17

    Article  CAS  Google Scholar 

  • Wang Y, Xu Y, Wang D, Zhang Y, Zhang X, Liu J, Zhao Y, Huang C, ** X (2019) Polytetrafluoroethylene/polyphenylene sulfide needle-punched triboelectric air filter for efficient particulate matter removal. ACS Appl Mater Interfaces 11(51):48437–48449

    Article  CAS  Google Scholar 

  • Wang L, Bian Y, Lim CK, Niu Z, Lee PKH, Chen C, Zhang L, Daoud WA, Zi Y (2021) Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy 85:106015

    Article  CAS  Google Scholar 

  • Wu CC, Lee GWM (2004) Oxidation of volatile organic compounds by negative air ions. Atmos Environ 38(37):6287–6295

    Article  CAS  Google Scholar 

  • Wu CC, Lee GWM, Yang S, Yu K-P, Lou CL (2006) Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci Total Environ 370(1):245–253

    Article  CAS  Google Scholar 

  • Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9(1):1802906

    Article  Google Scholar 

  • Wu X, Nethery RC, Sabath MB, Braun D, Dominici F (2020) Air pollution and COVID-19 mortality in the United States: strengths and limitations of an ecological regression analysis. Science. Advances 6(45):eabd4049

    CAS  Google Scholar 

  • Xu G, Li X, **a X, Fu J, Ding W, Zi Y (2019) On the force and energy conversion in triboelectric nanogenerators. Nano Energy 59:154–161

    Article  CAS  Google Scholar 

  • Ye Q, Fu J-F, Mao J-H, Shang S-Q (2016) Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children. Environ Sci Pollut Res 23(20):20178–20185

    Article  Google Scholar 

  • Zhang R, Liu C, Hsu P-C, Zhang C, Liu N, Zhang J, Lee HR, Lu Y, Qiu Y, Chu S, Cui Y (2016) Nanofiber air filters with high-TEMPERATURE stability for efficient PM2.5 removal from the pollution sources. Nano Lett 16(6):3642–3649

    Article  CAS  Google Scholar 

  • Zhang R, Xu Q, Bai S, Hai J, Cheng L, Xu G, Qin Y (2021) Enhancing the filtration efficiency and wearing time of disposable surgical masks using TENG technology. Nano Energy 79:105434

    Article  CAS  Google Scholar 

  • Zhang L, Sun J, Fang Y, Huang Y, Guo H, Wang ZL (2022) Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection. Nano Energy 98:107239

    Article  CAS  Google Scholar 

  • Zheng L, Wu Y, Chen X, Yu A, Xu L, Liu Y, Li H, Wang ZL (2017) Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv Funct Mater 27(16):1606408

    Article  Google Scholar 

  • Zheng Q, Fang L, Tang X, Zheng L, Li H (2022) Indoor air dust removal system based on high-voltage direct current triboelectric nanogenerator. Nano Energy 97:107183

    Article  CAS  Google Scholar 

  • Zi Y, Niu S, Wang J, Wen Z, Tang W, Wang ZL (2015) Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun 6(1):8376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengyu Guo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guo, H., Chen, J. (2023). Triboelectric Nanogenerator for Particle Filtering. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation