Modeling Anger-Like Responses in Animals: Denial of Food in Sight

  • Living reference work entry
  • First Online:
Handbook of Anger, Aggression, and Violence

Abstract

In spite of the profound impact anger has on human life, the underlying mechanisms are not clear. While the reasons for this gap in knowledge may be traced to the nonavailability of a suitable animal model, protocols aimed at generating anger-like emotions in rats have been tested. Hungry rats were allowed to see and smell food, but were denied access. These animals showed vigorous motor activity to obtain the food and intense biting behavior. The number of bites was considered as a measure of anger-like response. Concomitantly, the animals showed an increase in their blood pressure, heart rate, and plasma nor-epinephrine, the hallmark of anger. The biting behavior was correlated with increased neuronal activity in discrete components of the limbic system. Pharmacological interventions and analytical data suggested the role of serotonergic system in the modulation of anger-like behavior. The model may pave way to understanding the neural basis of anger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3V:

Third ventricle

5-HIAA :

5-Hydroxyindoleacetic acid

5-HT :

5-Hydroxytryptamine

8-OHDPAT:

8-Hydroxy-2-(di-n-propylamino) tetralin

aCSF:

Artificial cerebrospinal fluid

AHC:

Central part of the anterior hypothalamus

ANOVA:

Analysis of variance

Aq :

Aqueduct

ARC :

Arcuate nucleus

AUC:

Area under the curve

BAC :

Biting activity chamber

BLA :

Basolateral amygdala

BP :

Blood pressure

bpm:

Beats per minute

CeA:

Central nucleus of amygdala

D3V :

Dorsal third ventricle

DG :

Dentate gyrus

GABA :

Gamma aminobutyric acid

HPLC-ECD :

High-performance liquid chromatography-electrochemical detector

HR :

Heart rate

ICV :

Intracerebroventricular

ip :

Intraperitoneal

IR :

Infrared

LV :

Lateral ventricle

MeA :

Medial nucleus of the amygdala

ML :

Medial lemniscus

mmHg:

Millimeter of mercury

NE :

Nor-epinephrine

opt :

Optic tract

PAG :

Periaqueductal gray

PFC :

Prefrontal cortex

PVN :

Hypothalamic paraventricular nucleus

PVT :

Paraventricular nucleus of the thalamus

RRC :

Roller rotation chamber

SEM:

Standard error of the mean

SN :

Substantia nigra

VMH :

Ventromedial nucleus of hypothalamus

VTA :

Ventral tegmental area

References

  • Achterberg M, van Duijvenvoorde AC, Bakermans-Kranenburg MJ et al (2016) Control your anger! The neural basis of aggression regulation in response to negative social feedback. Soc Cogn Affect Neurosci 11(5):712–720

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci 14(10):1338–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer J (1976) The organization of aggression and fear in vertebrates. In: Perspectives in ethology. Springer, Boston. pp 231–298

    Google Scholar 

  • Awathale SN, Dudhbhate BB, Rahangdale RR et al (2020) Denial of food to the hungry rat: a novel paradigm for induction and evaluation of anger-like emotion. J Neurosci Methods 341:108791

    Article  PubMed  Google Scholar 

  • Awathale SN, Choudhary AG, Subhedar NK et al (2021) Neuropeptide CART modulates dopamine turnover in the nucleus accumbens: insights into the anatomy of rewarding circuits. J Neurochem 158(5):1172–1185

    Article  PubMed  Google Scholar 

  • Azrin NH, Rubin HB, Hutchinson RR (1968) Biting attack by rats in response to aversive shock. J Exp Anal Behav 11(5):633–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Berkowitz L (1989) Frustration-aggression hypothesis: examination and reformulation. Psychol Bull 106(1):59–73

    Article  PubMed  Google Scholar 

  • Blair RJR (2012) Considering anger from a cognitive neuroscience perspective. Wiley Interdiscip Rev Cogn Sci 3(1):65–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanchard RJ, Blanchard DC, Takahashi T et al (1977) Attack and defensive behaviour in the albino rat. Anim Behav 25(3):622–634

    Article  PubMed  Google Scholar 

  • Bortolato M, Pivac N, Muck Seler D et al (2013) The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 236:160–185

    Article  PubMed  Google Scholar 

  • Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond Ser B Biol Sci 368(1631):20130085

    Article  Google Scholar 

  • Capizzi JA, Allen GJ, Murphy D et al (2010) The interactive effects of metabolic syndrome, blood pressure, and mental health in worksite employees. Phys Sportsmed 38(1):45–53

    Article  PubMed  Google Scholar 

  • Carlini EA, Hamaoui A, Märtz RM (1972) Factors influencing the aggressiveness elicited by marihuana in food-deprived rats. Br J Pharmacol 44(4):794–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Carnevali L, Sgoifo A (2014) Vagal modulation of resting heart rate in rats: the role of stress, psychosocial factors, and physical exercise. Front Physiol 5:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Cases O, Seif I, Grimsby J et al (1995) Aggressive behavior and altered amounts of brain serotonin and nor-epinephrine in mice lacking MAOA. Science 268(5218):1763–1766

    Article  PubMed  PubMed Central  Google Scholar 

  • Centenaro LA, Vieira K, Zimmermann N et al (2008) Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology 201(2):237–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Connor DF, Chartier KG, Preen EC et al (2010) Impulsive aggression in attention-deficit/hyperactivity disorder: symptom severity, co-morbidity, and attention-deficit/hyperactivity disorder subtype. J Child Adolesc Psychopharmacol 20(2):119–126

    Article  PubMed  PubMed Central  Google Scholar 

  • da Cunha-Bang S, Hjordt LV, Perfalk E et al (2017) Serotonin 1B receptor binding is associated with trait anger and level of psychopathy in violent offenders. Biol Psychiatry 82(4):267–274

    Article  PubMed  Google Scholar 

  • Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation--a possible prelude to violence. Science 289(5479):591–594

    Article  PubMed  Google Scholar 

  • de Boer SF, Newman-Tancredi A (2016) Anti-aggressive effects of the selective high-efficacy ‘biased’ 5-HT1A receptor agonists F15599 and F13714 in male WTG rats. Psychopharmacology 233(6):937–947

    Article  PubMed  Google Scholar 

  • Denson TF, Pedersen WC, Ronquillo J (2009) The angry brain: neural correlates of anger, angry rumination, and aggressive personality. J Cogn Neurosci 21(4):734–744

    Article  PubMed  Google Scholar 

  • DeWall CN, Deckman T, Gailliot MT et al (2011) Sweetened blood cools hot tempers: physiological self-control and aggression. Aggress Behav 37(1):73–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Dougherty DD, Chou T, Buhlmann U et al (2020) Early amygdala activation and later ventromedial prefrontal cortex activation during anger induction and imagery. J Med Psychol 22(1):3–10

    Article  Google Scholar 

  • Duke AA, Bègue L, Bell R et al (2013) Revisiting the serotonin-aggression relation in humans: a meta-analysis. Psychol Bull 139(5):1148–1172

    Article  PubMed  PubMed Central  Google Scholar 

  • Egner T (2011) Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control. J Cogn Neurosci 23(12):3903–3913

    Article  PubMed  PubMed Central  Google Scholar 

  • Finlayson K, Lampe JF, Hintze S et al (2016) Facial indicators of positive emotions in rats. PLoS One 11(11):e0166446

    Article  PubMed  PubMed Central  Google Scholar 

  • Fokidis HB, Prior NH, Soma KK (2013) Fasting increases aggression and differentially modulates local and systemic steroid levels in male zebra finches. Endocrinology 154(11):4328–4339

    Article  PubMed  Google Scholar 

  • Ganella DE, Kim JH (2014) Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. Br J Pharmacol 171(20):4556–4574

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilam G, Hendler T (2017) Deconstructing anger in the human brain. Curr Top Behav Neurosci 30:257–273

    Article  PubMed  Google Scholar 

  • Gu S, Wang W, Wang F et al (2016) Neuromodulator and emotion biomarker for stress induced mental disorders. Neural Plast 2016:2609128

    Article  PubMed  PubMed Central  Google Scholar 

  • Haller J (2018) The role of central and medial amygdala in normal and abnormal aggression: a review of classical approaches. Neurosci Biobehav Rev 85:34–43

    Article  PubMed  Google Scholar 

  • Hashikawa K, Hashikawa Y, Falkner A et al (2016) The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 38:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera-Moro Chao D, León-Mercado L, Foppen E et al (2016) The suprachiasmatic nucleus modulates the sensitivity of arcuate nucleus to hypoglycemia in the male rat. Endocrinology 157(9):3439–3451

    Article  PubMed  Google Scholar 

  • Homberg JR, Pattij T, Janssen MC et al (2007) Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 26(7):2066–2073

    Article  PubMed  Google Scholar 

  • Hong W, Kim DW, Anderson DJ (2014) Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158(6):1348–1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia R, Tai FD, An SC et al (2008) Effects of neonatal oxytocin treatment on aggression and neural activities in mandarin voles. Physiol Behav 95(1–2):56–62

    Article  PubMed  Google Scholar 

  • Koolhaas JM, Coppens CM, de Boer SF et al (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp 77:e4367

    Google Scholar 

  • Kruk MR (1991) Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci Biobehav Rev 15(4):527–538

    Article  PubMed  Google Scholar 

  • Kuchiiwa S, Kuchiiwa T (2014) A novel semi-automated apparatus for measurement of aggressive biting behavior in mice. J Neurosci Methods 228:27–34

    Article  PubMed  Google Scholar 

  • Kudryavtseva NN, Bondar' NP (2002) Anxiolytic and anxiogenic effects of diazepam in male mice with different experience of aggression. Bull Exp Biol Med 133(4):372–376

    Article  PubMed  Google Scholar 

  • Lesch KP, Araragi N, Waider J et al (2012) Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond Ser B Biol Sci 367(1601):2426–2443

    Article  Google Scholar 

  • Lin D, Boyle MP, Dollar P et al (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470(7333):221–226

    Article  PubMed  PubMed Central  Google Scholar 

  • MacCormack JK, Lindquist KA (2019) Feeling hangry? When hunger is conceptualized as emotion. Emotion 19(2):301–319

    Article  PubMed  Google Scholar 

  • Manchanda SK, Poddar A, Saha S et al (1995) Predatory aggression induced by hypothalamic stimulation: modulation by midbrain periaqueductal gray (PAG). Neurobiology (Bp) 3(3–4):405–417

    PubMed  Google Scholar 

  • McCrimmon RJ, Ewing FM, Frier BM et al (1999) Anger state during acute insulin-induced hypoglycaemia. Physiol Behav 67(1):35–39

    Article  PubMed  Google Scholar 

  • Mohammadi S, Haghir H, Fazel AR et al (2013) Analysis of amygdala nucleus in the rat brain: a review study. Electron Physician 5(2):639–642

    PubMed  PubMed Central  Google Scholar 

  • Panksepp JB, Lahvis GP (2011) Rodent empathy and affective neuroscience. Neurosci Biobehav Rev 35(9):1864–1875

    Article  PubMed  PubMed Central  Google Scholar 

  • Passamonti L, Crockett MJ, Apergis-Schoute AM et al (2012) Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 71(1):36–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeling TA, Veening JG, Kruk MR et al (1994) Efferent connections of the hypothalamic “aggression area” in the rat. Neuroscience 59(4):1001–1024

    Article  PubMed  Google Scholar 

  • Rubey RN, Johnson MR, Emmanuel N et al (1996) Fluoxetine in the treatment of anger: an open clinical trial. J Clin Psychiatry 57(9):398–401

    PubMed  Google Scholar 

  • Rujescu D, Giegling I, Bondy B et al (2002) Association of anger-related traits with SNPs in the TPH gene. Mol Psychiatry 7(9):1023–1029

    Article  PubMed  Google Scholar 

  • Rygula R, Golebiowska J, Kregiel J et al (2015) Effects of optimism on motivation in rats. Front Behav Neurosci 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Saudou F, Amara DA, Dierich A et al (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    Article  PubMed  Google Scholar 

  • Sgoifo A, Koolhaas J, De Boer S et al (1999) Social stress, autonomic neural activation, and cardiac activity in rats. Neurosci Biobehav Rev 23(7):915–923

    Article  PubMed  Google Scholar 

  • Sigel E, Ernst M (2018) The benzodiazepine binding sites of GABAA receptors. Trends Pharmacol Sci 39(7):659–671

    Article  PubMed  Google Scholar 

  • Smith HR, Porrino LJ (2008) The comparative distributions of the monoamine transporters in the rodent, monkey, and human amygdala. Brain Struct Funct 213:73–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Staicu ML, Cuţov M (2010) Anger and health risk behaviors. J Med Life 3(4):372–375

    PubMed  PubMed Central  Google Scholar 

  • Steiner AP, Redish AD (2014) Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat Neurosci 17(7):995–1002

    Article  PubMed  PubMed Central  Google Scholar 

  • Suarez EC, Saab PG, Llabre MM et al (2004) Ethnicity, gender, and age effects on adrenoceptors and physiological responses to emotional stress. Psychophysiology 41(3):450–460

    Article  PubMed  Google Scholar 

  • Takahashi A, Nagayasu K, Nishitani N et al (2014) Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9(4):e94657

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulogdi A, Toth M, Halasz J et al (2010) Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. Eur J Neurosci 32(10):1744–1753

    Article  PubMed  Google Scholar 

  • Tulogdi A, Biro L, Barsvari B et al (2015) Neural mechanisms of predatory aggression in rats-implications for abnormal intraspecific aggression. Behav Brain Res 283:108–115

    Article  PubMed  Google Scholar 

  • Vrana SR, Rollock D (2002) The role of ethnicity, gender, emotional content, and contextual differences in physiological, expressive, and self-reported emotional responses to imagery. Cognit Emot 16(1):165–192

    Article  Google Scholar 

  • Wong LC, Wang L, D'Amour JA et al (2016) Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr Biol 26(5):593–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Wongwitdecha N, Marsden CA (1996) Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav Brain Res 75(1–2):27–32

    Article  PubMed  Google Scholar 

  • Yu Q, Teixeira CM, Mahadevia D et al (2014) Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 19(6):688–698

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Satyajit Rath, Aurnab Ghose, and Yash Bhatt for critical reading of the manuscript. The work was supported by grants from the Science and Engineering Research Board (SERB) (CRG/2020/004971), Govt. of India, New Delhi, India. BBD acknowledges the Mahatma Jyotiba Phule Research and Training Institute (MAHAJYOTI), Nagpur, for providing junior research fellowship [MAHAJYOTI/Nag./Fellowship/2021-22/1042 (352)] and the Indian Council of Medical Research (ICMR) for providing senior research fellowship (2021-15699/F1).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Subhedar, N.K., Dudhabhate, B.B., Kokare, D.M. (2022). Modeling Anger-Like Responses in Animals: Denial of Food in Sight. In: Martin, C., Preedy, V.R., Patel, V.B. (eds) Handbook of Anger, Aggression, and Violence. Springer, Cham. https://doi.org/10.1007/978-3-030-98711-4_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98711-4_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98711-4

  • Online ISBN: 978-3-030-98711-4

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Navigation