Bryophytes as an Accumulator of Toxic Elements from the Environment: Recent Advances

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 222 Accesses

Abstract

Toxic elements cause a serious threat to both the terrestrial and aquatic ecosystems. They are released into the environment by anthropogenic activities like the discharge of wastewaters viz. industrial effluents, home sewage, use of chemical fertilizers, burning of fossil fuel, mining of different ores, use of radioactive elements, and nuclear reactors which contribute to heavy metal influx into the environment. Bryophytes include liverworts, hornworts, and mosses which have a significant potential to absorb heavy metals, making them useful biomonitoring tools. Because of the lack of an efficient vascular system, heavy metals deposition has been seen in bryophytes. Bryophyte tissue is a potent ion exchanger with the environment; hence, they accumulate heavy metals from the sources. Metal absorption is extremely noticeable in bryophytes, especially in samples from contaminated streams. Mosses are the most important of the three groups of bryophytes in terms of bioaccumulation of hazardous substances from the environment. Moss species are more effective than vascular plant leaves for monitoring air pollution produced by heavy metals in urban areas. Hence, bryophytes are regarded as the best biomonitoring agent of environmental pollution. Currently, Moss bag techniques have been used to give a low-cost, flexible, and dense monitoring design that can show spatial and temporal trends but also vertical and horizontal gradients for a number of inorganic and organic pollutants. The moss bag approach will successfully overcome the issue of a lack of naturally grown mosses, allowing homogeneous biomonitoring of gaseous pollutants across all anthropogenically devastated areas. It has been utilized successfully for biomonitoring of potentially hazardous elements such as rare earth elements and persistent organic chemicals, primarily polycyclic aromatic hydrocarbons. In this context, a more in-depth research is necessary from the forthcoming researchers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ag:

Silver

Al:

Aluminum

Ca:

Calcium

Cd :

Cadmium

CEC :

Cation Exchange Capacity

CF :

Contamination Factor

Co :

Cobalt

Cr:

Chromium

Cu:

Copper

Fe:

Iron

Hg:

Mercury

HM:

Heavy Metal

K:

Potassium

Mg:

Magnesium

Mn:

Manganese

Mo:

Molybdenum

Na:

Sodium

Ni:

Nickel

PAH:

Polycyclic Aromatic Hydrocarbon

Pb:

Lead

PTE:

Potentially Toxic Trace Elements

Se:

Selenium

Sn:

Tin

Zn:

Zinc

References

  1. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:6730305

    Article  Google Scholar 

  2. Aničić M, Tasić M, Frontasyeva MV, Tomašević M, Rajšić S, Mijić Z et al (2009) Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut 157(2):673–679

    Article  PubMed  Google Scholar 

  3. Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernández JA (2012) Moss bag biomonitoring: a methodological review. Sci Total Environ 432:143–158

    Article  CAS  PubMed  Google Scholar 

  4. Ares Á, Itouga M, Kato Y, Sakakibara H (2018) Differential metal tolerance and accumulation patterns of Cd, Cu, Pb and Zn in the liverwort Marchantia polymorpha L. Bull Environ Contam Toxicol 100(3):444–450

    Article  CAS  PubMed  Google Scholar 

  5. Barakat M (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  6. Bargagli R, Brown DH, Nelli L (1995) Metal biomonitoring with mosses: procedures for correcting for soil contamination. Environ Pollut 89(2):169–175

    Article  CAS  PubMed  Google Scholar 

  7. Basile A, Cogoni AE, Bassi P, Fabrizi E, Sorbo S, Giordano S et al (2001) Accumulation of Pb and Zn in Gametophytes and Sporophytes of the Moss Funaria hygrometrica (Funariales). Ann Bot 87(4):537–543

    Article  CAS  Google Scholar 

  8. Basile A, Sorbo S, Pisani T, Paoli L, Munzi S, Loppi S (2012) Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ Pollut 166:208–211

    Article  CAS  PubMed  Google Scholar 

  9. Bates JW (1992) Mineral nutrient acquisition and retention by bryophytes. J Bryol 17(2):223–240

    Article  Google Scholar 

  10. Bell P (1959) The ability of Sphagnum to absorb cations preferentially from dilute solutions resembling natural waters. J Ecol 47(2):351–355

    Article  Google Scholar 

  11. Bellini E, Betti C, Sanità di Toppi L (2021) Responses to cadmium in early-diverging Streptophytes (Charophytes and bryophytes): current views and potential applications. Plan Theory 10(4):770

    CAS  Google Scholar 

  12. Berg T, Steinnes E (1997) Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Sci Total Environ 208(3):197–206

    Article  CAS  PubMed  Google Scholar 

  13. Boquete MT, Fernández JÁ, Carballeira A, Aboal JR (2013) Assessing the tolerance of the terrestrial moss Pseudoscleropodium purum to high levels of atmospheric heavy metals: a reciprocal transplant study. Sci Total Environ 461–462:552–559

    Article  PubMed  Google Scholar 

  14. Burton M, Peterson P (1979) Metal accumulation by aquatic bryophytes from polluted mine streams. Environ Pollut (1970) 19(1):39–46

    Article  CAS  Google Scholar 

  15. Čeburnis D, Steinnes E, Kvietkus K (1999) Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere 38(2):445–455

    Article  PubMed  Google Scholar 

  16. Ceschin S, Aleffi M, Bisceglie S, Savo V, Zuccarello V (2012) Aquatic bryophytes as Ecol. Indic. of the water quality status in the Tiber River basin (Italy). Ecol Indic 14(1):74–81

    Article  CAS  Google Scholar 

  17. Chen Y, Yuan S, Su Y, Wang L (2010) Comparison of heavy metal accumulation capacity of some indigenous mosses in Southwest China cities: a case study in Chengdu city. Plant Soil Environ 56(2):60–66

    Article  CAS  Google Scholar 

  18. Chen Y, Jiang Y, Huang H, Mou L, Ru J, Zhao J et al (2018) Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci Total Environ 637–638:1400–1412

    Article  PubMed  Google Scholar 

  19. Clymo R (1963) Ion exchange in Sphagnum and its relation to bog ecology. Ann Bot 27(2):309–324

    Article  CAS  Google Scholar 

  20. Dinis AM, Mesquita JF (2004) Uptake of heavy metal salt solutions by pollen grains of Magnolia× soulangeana (Magnoliaceae). Canada J Bot 82(12):1758–1767

    Article  CAS  Google Scholar 

  21. Duruibe JO, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  22. Freedman B (2018) Toxic elements. Environ Sci.Available via DIALOG.https://ecampusontario.pressbooks.pub/environmentalscience/chapter/chapter-18-toxic-elements/.

    Google Scholar 

  23. Fu Z, Guo W, Dang Z, Hu Q, Wu F, Feng C et al (2017) Refocusing on nonpriority toxic metals in the aquatic environment in China. ACS Publications, Washington, DC

    Book  Google Scholar 

  24. Gecheva G, Yancheva V, Velcheva I, Georgieva E, Stoyanova S, Arnaudova D et al (2020) Integrated monitoring with moss-bag and mussel transplants in reservoirs. Water 12(6):1800

    Article  Google Scholar 

  25. Gecheva G, Yurukova L, Ganeva A (2011) Assessment of pollution with aquatic bryophytes in Maritsa River (Bulgaria). Bull Environ Contam Toxicol 87(4):480–485

    Article  CAS  PubMed  Google Scholar 

  26. Gecheva G, Yurukova L, Cesa M, Cheshmedjiev S (2015) Monitoring of aquatic mosses and sediments: a case study in contaminated rivers, Bulgaria. Plant Biosyst 149(3):527–536

    Article  Google Scholar 

  27. Glime JM (2007) Economic and ethnic uses of bryophytes. Flora N Am 27:14–41

    Google Scholar 

  28. González-Miqueo L, Elustondo D, Lasheras E, Santamaría J (2010) Use of native mosses as biomonitors of heavy metals and nitrogen deposition in the surroundings of two steel works. Chemosphere 78(8):965–971

    Article  PubMed  Google Scholar 

  29. Grodzinska K (1999) The environmental situation in the upper Vistula Basin (Southern Poland). In: Peakall DB, Walker CH, Migula P (eds) Biomarkers: a pragmatic basis for remediation of severe pollution in Eastern Europe. Springer Netherlands, Dordrecht, pp 29–48

    Chapter  Google Scholar 

  30. Gupta A (1995) Heavy metal accumulation by three species of mosses in Shillong, North-Eastern India. Water Air Soil Pollut 82(3):751–756

    Article  CAS  Google Scholar 

  31. Hallingback T, Hodgetts N (2000) Mosses, liverworts and hornworts. Status survey and conservation action plan for bryophytes. IUCN/SSC Bryophyte Specialist Group, Gland

    Google Scholar 

  32. Harmens H, Norris D (2008) Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005): Programme Coordination centre for the ICP Vegetation, Centre for Ecology and Hydrology

    Google Scholar 

  33. Harmens H, Buse A, Büker P, Norris D, Mills G, Williams B et al (2004) Heavy metal concentrations in European mosses: 2000/2001 survey. J Atmos Chem 49(1):425–436

    Article  CAS  Google Scholar 

  34. Harmens H, Norris DA, Koerber GR, Buse A, Steinnes E, Rühling Å (2007) Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000. Atmos Environ 41(31):6673–6687

    Article  CAS  Google Scholar 

  35. Harmens H, Norris D, Steinnes E, Kubin E, Piispanen J, Alber R et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158(10):3144–3156

    Article  CAS  PubMed  Google Scholar 

  36. Harris ES (2008) Ethnobryology: traditional uses and folk classification of bryophytes. Bryologist 111:169–217

    Article  Google Scholar 

  37. Hassel K, Segreto R, Ekrem T (2013) Restricted variation in plant barcoding markers limits identification in closely related bryophyte species. Mol Ecol Resour 13(6):1047–1057

    CAS  PubMed  Google Scholar 

  38. Izquieta-Rojano S, Elustondo D, Ederra A, Lasheras E, Santamaría C, Santamaría JM (2016) Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecol Indic 60:1221–1228

    Article  CAS  Google Scholar 

  39. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  40. Joint W, Organization WH (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization. Regional Office for Europe. Report No.: 9289071796.Available via https://apps.who.int/iris/handle/10665/107872

    Google Scholar 

  41. Kapfer J, Birks H, Astrup Felde V, Klanderud K, Martinessen TC, Ross L et al (2013) Long-term vegetation stability in northern Europe as assessed by changes in species co-occurrences. Plant Ecol Divers 6:289–302

    Article  Google Scholar 

  42. Khan T, Muhammad S, Khan B, Khan H (2011) Investigating the levels of selected heavy metals in surface water of Shah Alam River (A tributary of River Kabul, Khyber Pakhtunkhwa). J Himal Earth Sci 44(2):71–79

    Google Scholar 

  43. Kłos A, Ziembik Z, Rajfur M, Dołhańczuk-Śródka A, Bochenek Z, Bjerke JW et al (2018) Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland. Sci Total Environ 627:438–449

    Article  PubMed  Google Scholar 

  44. Knight A, Crooke W, Inkson R (1961) Cation-exchange capacities of tissues of higher and lower plants and their related uronic acid contents. Nature 192(4798):142–143

    Article  CAS  PubMed  Google Scholar 

  45. Kocazorbaz EK, Kerem T, Moulahoum H, Ün RN (2021) Phytochemical and bioactivity analysis of several methanolic extracts of nine bryophytes species. Sakarya Univ J Sci 25(4):938–949

    Google Scholar 

  46. Kováčik J, Babula P, Hedbavny J (2017) Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere 180:86–92

    Article  PubMed  Google Scholar 

  47. Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Woźny A (2009) Pectinous cell wall thickenings formation – a response of moss protonemata cells to lead. Environ Exp Bot 65(1):119–131

    Article  Google Scholar 

  48. Lepp NW, Salmon D (1999) A field study of the ecotoxicology of copper to bryophytes. Environ Pollut 106(2):153–156

    Article  CAS  PubMed  Google Scholar 

  49. Macedo-Miranda G, Avila-Pérez P, Gil-Vargas P, Zarazúa G, Sánchez-Meza JC, Zepeda-Gómez C et al (2016) Accumulation of heavy metals in mosses: a biomonitoring study. Springer Plus 5(1):715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahapatra B, Dhal NK, Dash AK, Panda BP, Panigrahi KCS, Pradhan A (2019) Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environ Sci Pollut Res 26(29):29620–29638

    Article  Google Scholar 

  51. Mariet C, Gaudry A, Ayrault S, Moskura M, Denayer F, Bernard N (2011) Heavy metal bioaccumulation by the bryophyte Scleropodium purum at three French sites under various influences: Rural conditions, traffic, and industry. Environ Monit Assess 174(1):107–118

    Article  CAS  PubMed  Google Scholar 

  52. Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses. Toxicol Environ Chem 40(1–4):43–56

    Article  CAS  Google Scholar 

  53. Martins RJE, Boaventura RAR (2002) Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex. Hedw.). Water Res 36(20):5005–5012

    Article  CAS  PubMed  Google Scholar 

  54. Maxhuni A, Lazo P, Kane S, Qarri F, Marku E, Harmens H (2016) First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environ Sci Pollut Res 23(1):744–755

    Article  CAS  Google Scholar 

  55. Mentese S, Yayintas O, Bas B, İrkin L, Yilmaz S (2021) Heavy metal and mineral composition of soil, atmospheric deposition, and mosses with regard to integrated pollution assessment approach. Environ Manag 67:1–19

    Article  Google Scholar 

  56. Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  57. Patiño J, Vanderpoorten A (2018) Bryophyte biogeography. CRC Crit Rev Plant Sci 37(2–3):175–209

    Article  Google Scholar 

  58. Petschinger K, Adlassnig W, Sabovljevic M, Lang I (2021) Lamina cell shape and cell wall thickness are useful indicators for metal tolerance – an example in bryophytes. Plan Theory 10:274

    CAS  Google Scholar 

  59. Radziemska M, Mazur Z, Bes A, Majewski G, Gusiatin ZM, Brtnicky M (2019) Using mosses as bioindicators of potentially toxic element contamination in ecologically valuable areas located in the vicinity of a road: a case study. Int J Environ Res Public Health 16(20):3963

    Article  CAS  PubMed Central  Google Scholar 

  60. Ren J, Liu F, Luo Y, Zhu J, Luo X, Liu R (2021) The pioneering role of bryophytes in ecological restoration of manganese waste residue areas, Southwestern China. J Chem

    Google Scholar 

  61. Riget F, Asmund G, Aastrup P (2000) The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Sci Total Environ 245:137–148

    Article  CAS  PubMed  Google Scholar 

  62. Rola K, Osyczka P (2018) Cryptogamic communities as a useful bioindication tool for estimating the degree of soil pollution with heavy metals. Ecol Indic 88:454–464

    Article  CAS  Google Scholar 

  63. Rühling Å, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Br Sch Oikos 21:92–97

    Article  Google Scholar 

  64. Salemaa M, Derome J, Helmisaari H-S, Nieminen T, Vanha-Majamaa I (2004) Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci Total Environ 324(1–3):141–160

    Article  CAS  PubMed  Google Scholar 

  65. Saxena D (2004) Uses of bryophytes. Resonance 9(6):56–65

    Article  Google Scholar 

  66. Sharma S (2007) Marchantia polymorpha L.: a bioaccumulator. Aerobiologia 23(3):181–187

    Article  Google Scholar 

  67. Shotbolt L, Büker P, Ashmore M (2007) Reconstructing temporal trends in heavy metal deposition: assessing the value of herbarium moss samples. Environ Pollut 147(1):120–130

    Article  CAS  PubMed  Google Scholar 

  68. Smith AJE (1978) Provisional atlas of the bryophytes of the British Isles. 2nd ed. Biological Records Centre

    Google Scholar 

  69. Ștefănuț S, Öllerer K, Manole A, Ion MC, Constantin M, Banciu C et al (2019) National environmental quality assessment and monitoring of atmospheric heavy metal pollution-a moss bag approach. J Environ Manag 248:109224

    Article  Google Scholar 

  70. Szczepaniak K, Astel A, Bode P, Sârbu C, Biziuk M, Raińska E et al (2006) Assessment of atmospheric inorganic pollution in the urban region of Gdańsk, Northern Poland. J Radioanal Nucl Chem 270(1):35–42

    Article  CAS  Google Scholar 

  71. Thöni L, Yurukova L, Bergamini A, Ilyin I, Matthaei D (2011) Temporal trends and spatial patterns of heavy metal concentrations in mosses in Bulgaria and Switzerland: 1990–2005. Atmos Environ 45(11):1899–1912

    Article  Google Scholar 

  72. Trujillo-González JM, Zapata-Muñoz YL, Torres-Mora MA, García-Navarro FJ, Jiménez-Ballesta R (2020) Assessment of urban environmental quality through the measurement of lead in bryophytes: case study in a medium-sized city. Environ Geochem Health 42(10):3131–3139

    Article  PubMed  Google Scholar 

  73. Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104(1–3):231–253

    Article  Google Scholar 

  74. Tyler G (2008) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104(1–3):231–253

    Google Scholar 

  75. Uniyal P, Singh A, Sood A, Sharma P (2017) Assessment of accumulation of some heavy metals in mosses of Idukki District, Kerala (Western Ghats, India). Int J Plant Environ 3(01):15–19

    Article  Google Scholar 

  76. Vats SK, Singh A, Koul M, Uniyal PL (2010) Study on the metal absorption by two mosses in Delhi Region (India). J Am Sci 6:176–181

    Google Scholar 

  77. Vázquez MD, Villares R, Carballeira A (2013) Biomonitoring urban fluvial contamination on the basis of physiological stress induced in transplants of the aquatic moss Fontinalis antipyretica Hedw. Hydrobiologia 707(1):97–108

    Article  Google Scholar 

  78. Vázquez MD, Real C, Villares R (2020) Optimization of the biomonitoring technique with the aquatic Moss Fontinalis antipyretica Hedw: selection of shoot segment length for determining trace element concentrations. Water 12(9):2389

    Article  Google Scholar 

  79. Vuori KM, Helisten H (2010) The use of aquatic mosses in assessment of metal pollution: appraisal of type-specific background concentrations and inter-specific differences in metal accumulation. Hydrobiologia 656(1):99–106

    Article  CAS  Google Scholar 

  80. Wang S, Zhang Z, Wang Z (2015) Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Sci Total Environ 538:270–278

    Article  CAS  PubMed  Google Scholar 

  81. Wu L, Fu S, Wang X, Chang X (2020) Map** of atmospheric heavy metal deposition in Guangzhou city, southern China using archived bryophytes. Environ Pollut 265(Pt B):114998

    Article  CAS  PubMed  Google Scholar 

  82. **ao J, Han X, Sun S, Wang L, Rinklebe J (2021) Heavy metals in different moss species in alpine ecosystems of Mountain Gongga, China: geochemical characteristics and controlling factors. Environ Pollut 272:115991

    Article  CAS  PubMed  Google Scholar 

  83. Xu Y, Yang R, Zhang J, Gao L, Ni X (2021) Distribution and dispersion of heavy metals in the rock–soil–moss system in areas covered by black shale in the Southeast of Guizhou Province, China. Environ. Sci. Pollut. Res.(29)1:1-14.

    Google Scholar 

  84. Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment Paul B Tchounwou. Published in final edited form as: EXS.101: 133–164

    Google Scholar 

  85. Zinicovscaia I, Hramco C, Chaligava O, Yushin N, Grozdov D, Vergel K et al (2021) Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova. Plan Theory 10(3):471

    CAS  Google Scholar 

  86. Zvereva E, Kozlov M (2011) Impacts of industrial polluters on bryophytes: a meta-analysis of observational studies. Water Air Soil Pollut 218:573–586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barukial, J., Hazarika, P. (2022). Bryophytes as an Accumulator of Toxic Elements from the Environment: Recent Advances. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-97415-2_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97415-2_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation