Extracellular Matrix Bioactive Molecules and Cell Behavior Modeling

  • Living reference work entry
  • First Online:
Handbook of the Extracellular Matrix
  • 114 Accesses

Abstract

The extracellular matrix (ECM) is a multi-functional three-dimensional network of multi-domain proteins that provide biomechanical cues for tissue development and homeostasis. ECM components form a structurally stable tissue composite that renders it mechanical strength. The ECM is also a reservoir of growth factors and biomolecules that control fundamental cellular and biological processes such as proliferation, differentiation, apoptosis, and angiogenesis. Additionally, the ECM harbors a reservoir of growth factors and bioactive molecules that regulate various cellular processes such as cell attachment, motility, proliferation, differentiation, and cell death. Understanding the regulation of ECMs and the mechanisms of ECM remodeling is important for studying pathological processes, develo** new therapeutic interventions for diseases, and for engineering tissues. In this chapter, we will describe the cell-binding motifs and the bioactive molecules in the ECM, along with the resulting effects on cellular function and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aamodt JM, Grainger DW. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016;86:68–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5:539–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Abla A, Boeuf G, Elmarjou A, Dridi C, Poirier F, Changotade S, Lutomski D, Elm’selmi A. Engineering of bio-adhesive ligand containing recombinant RGD and PHSRN fibronectin cell-binding domains in fusion with a colored multi affinity tag: simple approach for fragment study from expression to adsorption. Int J Mol Sci. 2021;22:7362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl. 2002;41:391–412.

    Article  PubMed  Google Scholar 

  • Castellanos MI, Guillem-Marti J, Mas-Moruno C, Diaz-Ricart M, Escolar G, Ginebra MP, Gil FJ, Pegueroles M, Manero JM. Cell adhesive peptides functionalized on CoCr alloy stimulate endothelialization and prevent thrombogenesis and restenosis. J Biomed Mater Res A. 2017;105:973–83.

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Gao J, Chen CW, Huard J, Wang Y. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc Natl Acad Sci U S A. 2011;108:13444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipriani F, Bernhagen D, Garcia-Arevalo C, De Torre IG, Timmerman P, Rodriguez-Cabello JC. Bicyclic RGD peptides with high integrin alpha (v) beta (3) and alpha (5) beta (1) affinity promote cell adhesion on elastin-like recombinamers. Biomed Mater. 2019;14:035009.

    Article  CAS  PubMed  Google Scholar 

  • Dalton CJ, Lemmon CA. Fibronectin: molecular structure, Fibrillar structure and Mechanochemical signaling. Cell. 2021;10:2443.

    Article  CAS  Google Scholar 

  • Darvishi M, Ghasemi Hamidabadi H, Sahab Negah S, Moayeri A, Tiraihi T, Mirnajafi-Zadeh J, Jahanbazi Jahan-Abad A, Shojaei A. PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells. Iran J Basic Med Sci. 2020;23:431–8.

    PubMed  PubMed Central  Google Scholar 

  • Dias JR, Ribeiro N, Baptista-Silva S, Costa-Pinto AR, Alves N, Oliveira AL. In situ enabling approaches for tissue regeneration: current challenges and new developments. Front Bioeng Biotechnol. 2020;8:85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edalat SG, Jang Y, Kim J, Park Y. Collagen type I containing hybrid hydrogel enhances cardiomyocyte maturation in a 3D cardiac model. Polymers (Basel). 2019;11:687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrukh A, Ortega F, Fan W, Marichal N, Paez JI, Berninger B, Campo AD, Salierno MJ. Bifunctional hydrogels containing the laminin motif IKVAV promote neurogenesis. Stem Cell Rep. 2017;9:1432–40.

    Article  CAS  Google Scholar 

  • Fathi A, Mithieux SM, Wei H, Chrzanowski W, Valtchev P, Weiss AS, Dehghani F. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials. 2014;35:5425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulk DM, Johnson SA, Zhang L, Badylak SF. Role of the extracellular matrix in whole organ engineering. J Cell Physiol. 2014;229:984–9.

    Article  CAS  PubMed  Google Scholar 

  • Grant DS, Kleinman HK, Martin GR. The role of basement membranes in vascular development. Ann N Y Acad Sci. 1990;588:61–72.

    Article  CAS  PubMed  Google Scholar 

  • Grant DS, Kibbey MC, Kinsella JL, Cid MC, Kleinman HK. The role of basement membrane in angiogenesis and tumor growth. Pathol Res Pract. 1994;190:854–63.

    Article  CAS  PubMed  Google Scholar 

  • Gresham RCH, Bahney CS, Leach JK. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair. Bioact Mater. 2021;6:1945–56.

    Article  CAS  PubMed  Google Scholar 

  • Hautanen A, Gailit J, Mann DM, Ruoslahti E. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem. 1989;264:1437–42.

    Article  CAS  PubMed  Google Scholar 

  • Hettiaratchi MH, Krishnan L, Rouse T, Chou C, Mcdevitt TC, Guldberg RE. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci Adv. 2020;6:eaay1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata M, Yamaoka T. Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomater. 2018;65:44–52.

    Article  CAS  PubMed  Google Scholar 

  • Hosoyama K, Lazurko C, Munoz M, Mctiernan CD, Alarcon EI. Peptide-based functional biomaterials for soft-tissue repair. Front Bioeng Biotechnol. 2019;7:205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou L, Coller J, Natu V, Hastie TJ, Huang NF. Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia. Acta Biomater. 2016;44:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang NF, Yu J, Sievers R, Li S, Lee RJ. Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng. 2005;11:1860–6.

    Article  CAS  PubMed  Google Scholar 

  • Huang NF, Lee RJ, Li S. Chemical and physical regulation of stem cells and progenitor cells: potential for cardiovascular tissue engineering. Tissue Eng. 2007;13:1809–23.

    Article  CAS  PubMed  Google Scholar 

  • Huang NF, Zaitseva TS, Paukshto MV. Biomedical applications of collagen. Bioengineering (Basel). 2023;10:90.

    Article  PubMed  Google Scholar 

  • Jiang B, Suen R, Wertheim JA, Ameer GA. Targeting heparin to collagen within extracellular matrix significantly reduces Thrombogenicity and improves Endothelialization of Decellularized tissues. Biomacromolecules. 2016;17:3940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JP, Hu D, Domian IJ, Ogle BM. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci Rep. 2015;5:18705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing blended collagen-fibrin hydrogels for cardiac tissue engineering with human iPSC-derived cardiomyocytes. ACS Biomater Sci Eng. 2019;5:887–99.

    Article  CAS  PubMed  Google Scholar 

  • Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, Reuning U, Notni J, Wester HJ, Mas-Moruno C, Spatz J, Geiger B, Kessler H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding Integrins. Sci Rep. 2017;7:39805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna A. Fabrication of human serum albumin film for enhanced Hemocompatibility and mitigation of Neointimal hyperplasia under physiologically relevant flow shear conditions. Clemson: Clemson University; 2017.

    Google Scholar 

  • Khanna A, Zamani M, Huang NF. Extracellular matrix-based biomaterials for cardiovascular tissue engineering. J Cardiovasc Dev Dis. 2021;8:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna A, Oropeza BP, Huang NF. Engineering spatiotemporal control in vascularized tissues. Bioengineering (Basel). 2022;9:555.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.

    Article  CAS  PubMed  Google Scholar 

  • Laner-Plamberger S, Oeller M, Rohde E, Schallmoser K, Strunk D. Heparin and derivatives for advanced cell therapies. Int J Mol Sci. 2021;22:12041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le LV, Mohindra P, Fang Q, Sievers RE, Mkrtschjan MA, Solis C, Safranek CW, Russell B, Lee RJ, Desai TA. Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials. 2018;169:11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KI, Olmer M, Baek J, D’lima DD, Lotz MK. Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears. Acta Biomater. 2018;76:126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Lin Z, Mitsi M, Zhang Y, Vogel V. Heparin-induced conformational changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation. Biomater Sci. 2015;3:73–84.

    Article  CAS  PubMed  Google Scholar 

  • Mewhort HEM, Svystonyuk DA, Turnbull JD, Teng G, Belke DD, Guzzardi DG, Park DS, Kang S, Hollenberg MD, Fedak PWM. Bioactive extracellular matrix scaffold promotes adaptive cardiac remodeling and repair. JACC Basic Transl Sci. 2017;2:450–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mierke CT. Bidirectional mechanical response between cells and their microenvironment. Front Phys. 2021;9:749830.

    Article  Google Scholar 

  • Minguela J, Muller DW, Mucklich F, Llanes L, Ginebra MP, Roa JJ, Mas-Moruno C. Peptidic biofunctionalization of laser patterned dental zirconia: a biochemical-topographical approach. Mater Sci Eng C Mater Biol Appl. 2021;125:112096.

    Article  CAS  PubMed  Google Scholar 

  • Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.

    Article  CAS  PubMed  Google Scholar 

  • Nalbach L, Roma LP, Schmitt BM, Becker V, Korbel C, Wrublewsky S, Pack M, Spater T, Metzger W, Menger MM, Frueh FS, Gotz C, Lin H, Manning Fox JE, Macdonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med. 2021;13:e12616.

    Article  CAS  PubMed  Google Scholar 

  • Newland B, Ehret F, Hoppe F, Eigel D, Pette D, Newland H, Welzel PB, Kempermann G, Werner C. Macroporous heparin-based microcarriers allow long-term 3D culture and differentiation of neural precursor cells. Biomaterials. 2020;230:119540.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21:1968–94.

    Article  CAS  PubMed  Google Scholar 

  • Nomizu M, Utani A, Shiraishi N, Kibbey MC, Yamada Y, Roller PP. The all-D-configuration segment containing the IKVAV sequence of laminin a chain has similar activities to the all-L-peptide in vitro and in vivo. J Biol Chem. 1992;267:14118–21.

    Article  CAS  PubMed  Google Scholar 

  • Park KM, Son JY, Choi JH, Kim IG, Lee Y, Lee JY, Park KD. Macro/Nano-gel composite as an injectable and bioactive bulking material for the treatment of urinary incontinence. Biomacromolecules. 2014;15:1979–84.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan P, Marganski WA, Brown XQ, Wong JY. Direct comparison of the spread area, contractility, and migration of balb/c 3T3 fibroblasts adhered to fibronectin- and RGD-modified substrata. Biophys J. 2004;87:2818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G, Rezaee M, Razavi M, Taysir A, Wang J, Thakor AS. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties. Cell Tissue Res. 2019;376:353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufaihah AJ, Huang NF, Jame S, Lee JC, Nguyen HN, Byers B, De A, Okogbaa J, Rollins M, Reijo-Pera R, Gambhir SS, Cooke JP. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2011;31:e72–9.

    Article  CAS  PubMed  Google Scholar 

  • Sainio A, Jarvelainen H. Extracellular matrix-cell interactions: focus on therapeutic applications. Cell Signal. 2020;66:109487.

    Article  CAS  PubMed  Google Scholar 

  • Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M. Mimicking the hierarchical Organization of Natural Collagen: toward the development of ideal scaffolding material for tissue regeneration. Front Bioeng Biotechnol. 2021;9:644595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schieber R, Mas-Moruno C, Lasserre F, Roa JJ, Ginebra MP, Mucklich F, Pegueroles M. Effectiveness of direct laser interference patterning and peptide immobilization on endothelial cell migration for cardio-vascular applications: an in vitro study. Nanomaterials (Basel). 2022;12:1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabelrauch M, Schiller J, Moller S, Scharnweber D, Hintze V. Chemically modified glycosaminoglycan derivatives as building blocks for biomaterial coatings and hydrogels. Biol Chem. 2021;402:1385–95.

    Article  CAS  PubMed  Google Scholar 

  • Shayan M, Huang MS, Navarro R, Chiang G, Hu C, Oropeza BP, Johansson PK, Suhar RA, Foster AA, Lesavage BL, Zamani M, Enejder A, Roth JG, Heilshorn SC, Huang NF. Elastin-like protein hydrogels with controllable stress relaxation rate and stiffness modulate endothelial cell function. J Biomed Mater Res A. 2023;111:896–909.

    Article  CAS  PubMed  Google Scholar 

  • Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. J Tissue Eng Regen Med. 2016;10:E419–32.

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Zhang F, Linhardt RJ. Analysis of the glycosaminoglycan chains of proteoglycans. J Histochem Cytochem. 2021;69:121–35.

    Article  CAS  PubMed  Google Scholar 

  • Spicer CD, Pashuck ET, Stevens MM. Achieving controlled biomolecule-biomaterial conjugation. Chem Rev. 2018;118:7702–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol. 2010;2010:795385.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan J, Cui Y, Zeng Z, Wei L, Li L, Wang H, Hu H, Liu T, Huang N, Chen J, Weng Y. Heparin/poly-l-lysine nanoplatform with growth factor delivery for surface modification of cardiovascular stents: the influence of vascular endothelial growth factor loading. J Biomed Mater Res A. 2020;108:1295–304.

    Article  CAS  PubMed  Google Scholar 

  • Tao ZW, Mohamed M, Hogan M, Gutierrez L, Birla RK. Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel. J Tissue Eng Regen Med. 2017;11:153–63.

    Article  CAS  PubMed  Google Scholar 

  • Vanderhooft JL, Mann BK, Prestwich GD. Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules. 2007;8:2883–9.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Lee AR, Lin WH, Lin CW, Wu YK, Tsai WB. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A. 2014;20:1896–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants to N.F.H. from the US National Institutes of Health (R01 HL127113, R01 HL142718), the National Science Foundation (1829534 and 2227614), the US Department of Veterans Affairs (1I01BX002310 and 1I01BX004259), and the American Heart Association (20IPA35360085 and 20IPA35310731). This work was also supported in part by the Alliance for Regenerative Rehabilitation Research and Training (AR3T), which is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under Award Number P2CHD086843 to N.F.H. This work was also supported in part by the Tobacco Related Disease Research Program (T33IP6580) and the Lipedema Foundation (LF55-22) to N.F.H. N.F.H. is a recipient of a Research Career Scientist award (IK6 BX006309) from the Department of Veterans Affairs. B.P.O. was supported in part by a diversity supplement from the US National Institutes of Health (3R01HL151997-03S1). Figures were created using BioRender. This publication was made possible by a grant from the US Federal Department of Agriculture (FDA), which supports the University of San Francisco-Stanford Center of Excellence in Regulatory Sciences and Innovation (U01FD005978). The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the US Department of Health and Human Services or FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngan F. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khanna, A., Oropeza, B.P., Jain, I., Huang, N.F. (2023). Extracellular Matrix Bioactive Molecules and Cell Behavior Modeling. In: Maia, F.R.A., Oliveira, J.M., Reis, R.L. (eds) Handbook of the Extracellular Matrix. Springer, Cham. https://doi.org/10.1007/978-3-030-92090-6_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92090-6_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92090-6

  • Online ISBN: 978-3-030-92090-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation