Nanocellulose for Antibacterial, Anti-biofouling Applications: To Antiviral Development in the Future

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses
  • 785 Accesses

Abstract

Nanocellulose is produced from natural resources, such as plants and bacteria, by using artificial mechanical and chemical processes. Since it is made from natural resources, nanocellulose is environmentally friendly, biocompatible, and biodegradable and has low toxicity. In addition, it has high mechanical strength and elasticity and many other attractive properties for a variety of applications. However, it doesn’t have inherent antifouling properties. In this chapter, we analyze nanocellulose materials from the viewpoint of antifouling properties. We discuss the fundamental aspects needed for the analyses and introduce the concepts of antibacterial and antifouling properties. Then, some specific cases are provided. Finally, the antiviral property for nanocellulose materials is proposed for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalia, S., Sabaa, M.: Polysaccharide Based Graft Copolymers, vol. 22. Springer, Berlin (2013)

    Book  Google Scholar 

  2. Habibi, Y., Lucia, L.A.: Polysaccharide Building Blocks: A Sustainable Approach to the Development of Renewable Biomaterials. John Wiley & Sons, New York (2012)

    Book  Google Scholar 

  3. Huang, J., Chang, P.R., Lin, N., Dufresne, A.: Polysaccharide-Based Nanocrystals: Chemistry and Applications. John Wiley & Sons, Weinheim (2014)

    Google Scholar 

  4. Van De Ven, T.G., Godbout, L.: Cellulose: Fundamental Aspects. BoD–Books on Demand (2013)

    Google Scholar 

  5. Wertz, J.-L., Bédué, O., Mercier, J.P.: Cellulose Science and Technology. EPFL press, Lausanne (2010)

    Book  Google Scholar 

  6. Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG, Berlin (2017)

    Book  Google Scholar 

  7. Kargarzadeh, H., Ahmad, I., Thomas, S., Dufresne, A.: Handbook of Nanocellulose and Cellulose Nanocomposites. Wiley Online Library, Weinheim (2017)

    Book  Google Scholar 

  8. Lee, K.-Y.: Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies. CRC Press, Milton (2018)

    Book  Google Scholar 

  9. Huang, J., Dufresne, A., Lin, N.: Nanocellulose: From Fundamentals to Advanced Materials. John Wiley & Sons, Newark (2019)

    Book  Google Scholar 

  10. Gama, M., Gatenholm, P., Klemm, D.: Bacterial Nanocellulose: A Sophisticated Multifunctional Material. CRC press, Boca Raton (2012)

    Google Scholar 

  11. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014)

    Article  CAS  Google Scholar 

  12. Mautner, A.: Nanocellulose water treatment membranes and filters: a review. Polym. Int. 69, 741–751 (2020)

    Article  CAS  Google Scholar 

  13. Kupnik, K., PrimoĹľiÄŤ, M., Kokol, V., Leitgeb, M.: Nanocellulose in drug delivery and antimicrobially active materials. Polymers. 12, 2825 (2020)

    Article  CAS  Google Scholar 

  14. Moore, C.J.: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ. Res. 108, 131–139 (2008)

    Article  CAS  Google Scholar 

  15. Gewert, B., Plassmann, M.M., MacLeod, M.: Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process Impacts. 17, 1513–1521 (2015)

    Article  CAS  Google Scholar 

  16. Erni-Cassola, G., Zadjelovic, V., Gibson, M.I., Christie-Oleza, J.A.: Distribution of plastic polymer types in the marine environment; a meta-analysis. J. Hazard. Mater. 369, 691–698 (2019)

    Article  CAS  Google Scholar 

  17. Norppa, H.: Nanofibrillated cellulose: results of in vitro and in vivo toxicological assays. In Proceedings of Presentation on Sunpap conference.

    Google Scholar 

  18. Väänänen, V., Rydman, E., Ilves, M., Hannukainen, K., Norppa, H., Von Wright, H., Honkalampi, U., Tsitko, I., Rouhiainen, J.: Evaluation of the suitability of the developed methodology for nanoparticle health and safety studies. Proceedings of the Scale-up Nanoparticles in Modern Papermaking (SUNPAP 2012), Milan, Italy (2012).

    Google Scholar 

  19. Alexandrescu, L., Syverud, K., Gatti, A., Chinga-Carrasco, G.: Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose. 2013, 20 (1765-1775)

    Google Scholar 

  20. Kanematsu, H., Barry, D.M.: A sequence between microfouling and macrofouling in marine biofouling. In: Takahashi, T. (ed.) Marine Ecology: Current and Future Developments – Monitoring Artificial Materials and Microbes in Marine Ecosystems: Interactions and Assessment Methods, vol. 2, pp. 67–80. Bentham Scientific Publisher, Sharajah, United Arab Emirates (2020)

    Google Scholar 

  21. Kanematsu, H., Barry, D.M.: Formation and Control of Biofilm in Various Environments, p. 249. Springer, Singapore (2020)

    Book  Google Scholar 

  22. Hideyuiki, K., Barry, D.M., Ikegai, H., Yoshitake, M., Mizunoe, Y.: Nanofibers and biofilm in materials science. In: Barhoum, A., Bechelany, M., Hamdy Makhlouf, A.S. (eds.) Handbook of Nanofibers – Fundamental Aspects, Experimental Setup, Synthesis, Properties and Physicochemical Characterization, vol. 1, pp. 1–21. Springer International Publishing AG, Cham (2018)

    Google Scholar 

  23. Elias, B., Bar-Yam, Y.: Could air Filtration Reduce COVID-19 Severity and Spread. New England Complex Systems Institute, Cambridge, MA (2020)

    Google Scholar 

  24. The global market for nanocellulose to 2017. Edinburgh, Lothian EH74N, United Kingdom: Futures Markets Inc..; 1012, p.66.

    Google Scholar 

  25. Moritz, S., Wiegand, C., Wesarg, F., Hessler, N., Müller, F.A., Kralisch, D., Hipler, U.-C., Fischer, D.: Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm. 471, 45–55 (2014)

    Article  CAS  Google Scholar 

  26. Pachuau, L.: Application of nanocellulose for controlled drug delivery. Nanocellulose and nanohydrogel Matrices: biotechnological and biomedical applications (2017), 1-19.

    Google Scholar 

  27. Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B., Li, Y.: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 188, 27–36 (2018)

    Article  CAS  Google Scholar 

  28. Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S.Y., Yuen, K.H.: Production of nanocellulose and its applications in drug delivery: a critical review. ACS Sustain. Chem. Eng. 7, 15800–15827 (2019)

    Article  CAS  Google Scholar 

  29. **u, Z.-M., Zhang, Q.-B., Puppala, H.L., Colvin, V.L., Alvarez, P.J.: Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012)

    Article  CAS  Google Scholar 

  30. Yang, G., **e, J., Deng, Y., Bian, Y., Hong, F.: Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr. Polym. 87, 2482–2487 (2012)

    Article  CAS  Google Scholar 

  31. Lizundia, E., Goikuria, U., Vilas, J.L., Cristofaro, F., Bruni, G., Fortunati, E., Armentano, I., Visai, L., Torre, L.: Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromolecules. 19, 2618–2628 (2018)

    Article  CAS  Google Scholar 

  32. El-Wakil, N.A., Hassan, E.A., Abou-Zeid, R.E., Dufresne, A.: Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr. Polym. 124, 337–346 (2015)

    Article  CAS  Google Scholar 

  33. Ul-Islam, M., Khattak, W.A., Ullah, M.W., Khan, S., Park, J.K.: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose. 21, 433–447 (2014)

    Article  CAS  Google Scholar 

  34. Galkina, O.L., Önneby, K., Huang, P., Ivanov, V.K., Agafonov, A.V., Seisenbaeva, G.A., Kessler, V.G.: Antibacterial and photochemical properties of cellulose nanofiber–titania nanocomposites loaded with two different types of antibiotic medicines. J. Mater. Chem. B. 3, 7125–7134 (2015)

    Article  CAS  Google Scholar 

  35. Barua, S., Das, G., Aidew, L., Buragohain, A.K., Karak, N.: Copper–copper oxide coated nanofibrillar cellulose: a promising biomaterial. RSC Adv. 3, 14997–15004 (2013)

    Article  CAS  Google Scholar 

  36. Mirtalebi, S.S., Almasi, H., Alizadeh Khaledabad, M.: Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. Int. J. Biol. Macromol. 128, 848–857 (2019)

    Article  CAS  Google Scholar 

  37. Wei, B., Yang, G., Hong, F.: Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 84, 533–538 (2011)

    Article  CAS  Google Scholar 

  38. Wiegand, C., Moritz, S., Hessler, N., Kralisch, D., Wesarg, F., MĂĽller, F.A., Fischer, D., Hipler, U.-C.: Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med. 26, 245 (2015)

    Article  Google Scholar 

  39. Okabe, K., Kimura, H., Okabe, J., Kato, A., Shimizu, H., Ueda, T., Shimada, S., Ogura, Y.: Effect of Benzalkonium Chloride on Transscleral drug delivery. Investig. Ophthalmol. Vis. Sci. 46, 703–708 (2005)

    Article  Google Scholar 

  40. Zhang, P., Chen, L., Zhang, Q., Hong, F.F.: Using In situ dynamic cultures to rapidly Biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front. Microbiol. 7, 260 (2016)

    PubMed  PubMed Central  Google Scholar 

  41. Poonguzhali, R., Basha, S.K., Kumari, V.S.: Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int. J. Biol. Macromol. 105, 111–120 (2017)

    Article  CAS  Google Scholar 

  42. Kanematsu, H.: A new international standard for testing antibacterial effects. Adv. Mater. Process. 175, 26–29 (2017)

    Google Scholar 

  43. Kanematsu, H., Kawai, R., Satoh, R.: Antibacterial, antiviral and antibiofilm coatings. Yosha (J. Spray Coating). 57, 183–190 (2020) (in Japanese)

    CAS  Google Scholar 

Download references

Acknowledgment

A part of this work was supported by GEAR 5.0 Project of National Institute of Technology (KOSEN) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Kanematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kanematsu, H., Barry, D.M., Satoh, R., Kawai, R., McGrath, P. (2022). Nanocellulose for Antibacterial, Anti-biofouling Applications: To Antiviral Development in the Future. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_20

Download citation

Publish with us

Policies and ethics

Navigation