Life Cycle Assessment of Greenhouse Gas Emissions

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation
  • 4102 Accesses

Abstract

Life cycle assessment (LCA) of greenhouse gas emissions has been developed for analyzing environmental burdens and impacts of products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessments of greenhouse gas emissions are often part of wider environmental assessments, which also cover other environmental burdens or impacts. Such wider-ranging assessments allow for considering “trade-offs” between reduction of greenhouse gas emissions and other environmental impacts and co-benefits of reduced greenhouse gas emissions. Data about greenhouse gas emissions used as input in assessments of current product life cycles do allow for substantial uncertainties in life cycle emission estimates. Estimates of life cycle greenhouse gas emissions linked to new processes and products are subject to even greater data-linked uncertainty. Variability in outcomes of life cycle assessments of greenhouse gas emissions may originate in different choices regarding system boundaries, time horizons, and the allocation of emissions to outputs in multi-output processes. Life cycle assessments can include other interventions than the emission of well-mixed greenhouse gases, which can affect climate such as changes in tropospheric ozone and aerosol concentrations, changes in albedo, and the generation of contrails and cirrus clouds.

Life cycle assessments may be useful in the identification of life cycle stages that are major contributors to life cycle greenhouse gas emissions and of major reduction options, in the verification of alleged climate benefits, and to establish major differences between competing products.

Main findings from available life cycle assessments of greenhouse gas emissions are summarized for products ranging from buildings to unconventional fossil fuels, and from food to vehicles. Guidance for reducing greenhouse gas emissions is presented. Future directions in develo** life cycle assessment and its application are indicated. These include better handling of indirect effects, of uncertainty, and of changes in ecosystem carbon stocks and improved comprehensiveness in dealing with climate change by including, where appropriate, climate effects of changes in albedo, tropospheric ozone, and aerosols and the generation of contrails and cirrus clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,390.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,604.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adetutu MO, Glass AJ, Weyman-Jones TG (2016) Economy-wide estimates of rebound effects; evidence from panel data. Energy J 37:252–269

    Article  Google Scholar 

  • Agarwal AK, Agarwal RA, Gupta T, Gurjar BR (2017) Introduction to biofuels. In: Agarwal AK et al. (eds.) Biofuels, Green Energy and Technology. Springer, Singapore pp3-6

    Google Scholar 

  • Agostini A, Giuntoli J, Marelli AS (2020) Flaws in the interpretation phase of bioenergy LCA fuel the debate and mislead policymakers. Int J Life Cycle Assess 25:17–35

    Article  Google Scholar 

  • Almeida DLT, Charbuillet C, Haslouin C, Lebert A, Perry K (2020) Economic models used in consequential life cycle assessment: a literature review. Proc CIRP 90:189–198

    Article  Google Scholar 

  • Amini SH, Remmerswaal JAM, Castro MB, Reuter MA (2007) Quantifying quality loss and resource efficiency of recycling by means of exergy analysis. J Clean Prod 15:907–913

    Article  Google Scholar 

  • Anand CK, Amor B (2017) Recent developments, future challenges and new research directions in LCA of buildings. Renew Sust Energ Rev 67:408–416

    Article  Google Scholar 

  • Ando K, Shinjo H (2017) Slash-and-burn agriculture in Zambia. In: Funakawa (ed) Soils, ecosystem processes, and agricultural development. Springer, Tokyo, pp 253–274

    Chapter  Google Scholar 

  • Andrade EP, de Araujo Nunes AB, de Freitas Alves K, Ugaya CML, Alencar M, de Lima Santos T, de Silva Barros V, Pastor AV, de Figueiredo HCB (2020) Water scarcity in Brazil: part 1 - regionalization of the AWARE model characterization factors. Int J life Cycle Assess. https://doi.org/10.1007/s11367-019-01643-5 (17pp)

  • Andrae ASG, Andersen O (2010) Life cycle assessments of consumer electronics – are they consistent? Int J Life Cycle Assess 15:827–836

    Article  Google Scholar 

  • Ardente F, Beccali G, Cellura M, Brano VL (2005) Life cycle assessment of a solar thermal collector. Renew Energy 30:1031–1054

    Article  Google Scholar 

  • Arvidsson R (2017) Review of environmental life cycle assessment studies of graphene production. Adv Mater Lett 8:187–195

    Article  Google Scholar 

  • Auer J, Meincke A (2018) Comparative life cycle assessment of electric motors with different efficiency classes: a deep dive between the life cycle stages in ecodesign context. Int J Life Cycle Assess 23:1590–1618

    Article  Google Scholar 

  • Aydin E, Kok N, Brounen D (2017) Energy efficiency and household behavior: the rebound effect in the residential sector. RAND J Econ 48:749–782

    Article  Google Scholar 

  • Bala A, Raugei M, Benviste G, Gazulla C, Fullana-i-Palmer P (2010) Simplified tools for global warming potential evaluation: when ‘good enough’ is best. Int J Life Cycle Assess 15:489–498

    Article  Google Scholar 

  • Baldé H, VanderZaag AC, Butt SD, Wagner-Riddle C, Crolla A, Desjardins RL, MacDonald DJ (2016) Methane emissions from digestate at an agricultural biogas plant. Bioresour Technol 216:914–922

    Article  Google Scholar 

  • Bamber N, Turner I, Arulnathan V, Li Y, Ershadi SZ, Smart A, Pelletier N (2020) Comparing source and analysis of uncertainty in consequential and attributional life cycle assessment: a review of current practice and recommendations. Int J Life Cycle Assess 25:168–180

    Article  Google Scholar 

  • Batlles FI, Rosiek S, Munoz I, Fernandez-Alba AB (2010) Environmental assessment of the CIESOL solar building after two years of operation. Environ Sci Technol 44:3587–3593

    Article  Google Scholar 

  • Bekel K, Pauliuk S (2019) Prospective cost and environmental impact assessment of battery and fuel cell vehicles in Germany. Int J Life Cycle Assess 24:2220–2234

    Article  Google Scholar 

  • Benavide PT, Dunn JB, Han J, Biddy M, Markham J (2018) Exploring comparative and environmental benefits of virgin, recycled and bioderived PET bottles. ACS Sustain Chem Eng 6:9725–9733

    Article  Google Scholar 

  • Beretta C, Hellweg S (2019) Potential environmental benefits from food waste prevention in the food service sector. Resour Conserv Recycl 147:169–178

    Article  Google Scholar 

  • Berrill P, Arvesen A, Scholz Y, Gils HC, Hertwich FG (2016) Environmental impacts of high penetration renewable energy scenarios for Europe. Environ Res Lett 44:01402. (10pp)

    Google Scholar 

  • Bertram M, Buxmann K, Furrer P (2009) Analysis of greenhouse gas emissions related to aluminum transport applications. Int J Life Cycle Assess 14:S62–S69

    Article  Google Scholar 

  • Bicalho T, Duaer I, Patino-Echeverri D (2019) Quality of data for estimating GHG emissions in biofuel regulations is unknown: A review of default values related to sugarcane and corn ethanol. J Clean Prod 239:11793. (13pp)

    Article  Google Scholar 

  • Björklund A, Finnveden G (2005) Recycling revisited: life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44:309–317

    Article  Google Scholar 

  • Blengini GA, di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Buildings 42:869–880

    Article  Google Scholar 

  • Boehm R, Wilde PE, Ver Ploeg M, Costello C, Cash SB (2018) A comprehensive life cycle assessment of greenhouse gas emissions from US household food choices. Food Policy 79:67–76

    Article  Google Scholar 

  • Botas JA, Moreno J, Espada JJ, Serrano DP, Dufour J (2017) Recycling of used lubrication oil: evaluation of environmental and energy performance by LCA. Resourc Conserv Recycl 125:315–323

    Article  Google Scholar 

  • Brakkee KW, Huijbregts MAJ, Eickhout B, Hendriks AJ, van de Meent D (2008) Characterisation factors for greenhouse gases at a midpoint level including indirect effects based on calculations with the IMAGE model. Int J Life Cycle Assess 13:191–201

    Article  Google Scholar 

  • Brehmer B, Boom RM, Sanders J (2009) Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem Eng Des 87:1103–1119

    Google Scholar 

  • Bruun TB, de Neergaard A, Lawrence D, Ziegler AD (2009) Environmental consequences of the demise in swidden cultivation in southeast Asia: carbon storage and soil quality. Hum Ecol 37:375–388

    Article  Google Scholar 

  • Bulle C, Margni M, Patouillard L, Boulay A, Bourgault G, De Bruille V, Hauschild M, Henderson A, Humbert S, Kashef-Haghighi A, Kounina A, Laurent A, Levasseur A, Liard G, Rosenbaum RK, Roy P, Shaked S, Fantke P, Jolliet O (2019) IMPACT World +: a globally regionalizes life cycle impact assessment method. Int J Life Cycle Assess 24:1653–1674

    Article  Google Scholar 

  • Cabbalero-Guzman A, Sun T, Nowak B (2015) Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag 36:33–43

    Article  Google Scholar 

  • Carlsson-Kanyama A, Gonzalez AD (2009) Potential contributions of food consumption patterns to climate change. Am J Clin Nutr 89:1704S–1709S

    Article  Google Scholar 

  • Carter S, Herold M, Avitabile V, De Bruin S, De Sij V, Kooistra L, Rufino M (2018) Agriculture driven deforestation in the tropics from 1990-2015: emissions, trends and uncertainties. Eviron Res Lett 13:014002. (13pp)

    Article  Google Scholar 

  • Chapman L (2007) Transport and climate change: a review. J Transp Geogr 15:354–367

    Article  Google Scholar 

  • Chen C, Chaudhary A, Matthijs A (2020) Nutritional and environmental losses embedded in global food waste. Resour Conserv Recycl 160:104912. (12pp)

    Article  Google Scholar 

  • Chester M, Horvath A (2010) Life-cycle assessment of high-speed rail: the case of California. Environ Res Lett 5:014003. (8pp)

    Article  Google Scholar 

  • Christensen TH, Gentil E, Boldrin A, Larsen AW, Weidema BP, Hauschild M (2009) C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems. Waste Manag Res 27:707–715

    Article  Google Scholar 

  • Ciacci L, Harper EM, Nassar NT, Reck B, Graedel TE (2016) Metal dissipation and inefficient recycling intensify climate forcing. Environ Sci Technol 50:11394–11402

    Article  Google Scholar 

  • Ciroth A, Foster C, Hildenbrand J, Zamagni A (2020) Life cycle inventory dataset review criteria - a new proposal. Int J Life Cycle Assess 25:483–494

    Article  Google Scholar 

  • Citherlet S, Defaux T (2007) Energy and environmental comparison of three variants of a family house during its whole life span. Build Environ 42:591–598

    Article  Google Scholar 

  • Cleveland CJ, Connor PA (2011) Energy return on investment in oil shale. Sustainability 3:2307–2322

    Article  Google Scholar 

  • Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783

    Article  Google Scholar 

  • Cooper DP, Guntovski TG (2015) The environmental impact of reuse: a review. J Ind Ecol 21:38–56

    Article  Google Scholar 

  • Corrado S, Ardente F, Sala S, Saouter E (2017) Modelling of food loss within life cycle assessment: from current practice to systematisation. J Clean Prod 140:847–859

    Article  Google Scholar 

  • Costa D, Jesus J, Branco D, Danko A, Fiúza A (2017) Extensive review of shale gas environmental impacts from scientific literature (2010-2015). Environ Sci Pollut Res 24:14579–14594

    Article  Google Scholar 

  • Court V, Fizaine F (2017) Long term estimates on the energy-return-on-investment of coal, oil and gas global production. Ecol Econ 138:145–159

    Article  Google Scholar 

  • Court V, Sorrell S (2020) Digitalisation of goods: a systematic review of the determinants and magnitude of the impact on energy consumption. Environ Res Lett 15:043001. (26pp)

    Article  Google Scholar 

  • Couture JL, Geyer R, Hansen JO, Kuczenski B, Overland M, Palazzo J, Sahlmann C, Lenihan B (2019) Environmental benefits of novel nonhuman food inputs in salmon feeds. Environ Sci Technol 53:1967–1975

    Article  Google Scholar 

  • Cox B, Jemiolo W, Mutel C (2018) Life cycle assessment air transportation and Swiss commercial air transport fleet. Trans Res D Trans Environ 58:1–13

    Article  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N 2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Google Scholar 

  • Cullen JM, Allwood JM (2009) The role of washing machines in life cycle assessment studies: the danger of using LCA for prioritization. J Ind Ecol 13: 27–37.

    Google Scholar 

  • Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Muryarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested land: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358

    Article  Google Scholar 

  • Danilecki K, Mrozik H, Smurawski D (2017) Change in the environmental profile of a popular passenger car over the last 30 years -results of a simplified LCA study. J Clean Prod 241:208–218

    Article  Google Scholar 

  • De Bikuna KS, Hamelin L, Hauschild MZ, Pilegaard K, Ibrom A (2018) A comparison of land use change accounting methods; seeking common grounds for key modelling choices in biodiesel assessments. J Clean Prod 127:52–61

    Article  Google Scholar 

  • De Eicker MO, Hischier R, Hurni H, Zah R (2010) Using non local databases for the environmental assessment of industrial activities: the case of Latin America. Environ Impact Assess Rev 30:145–157

    Article  Google Scholar 

  • De Gorter H, Just DR (2010) The social costs and benefits of biofuels: the intersection of environmental, energy and agricultural policy. Appl Econ Perspect Pol 32:4–32

    Article  Google Scholar 

  • De Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11

    Article  Google Scholar 

  • Del Pero F, Delogu M, Pierini M (2017) The effect of light weighting in automotive LCA perspective: estimation of mass induced fuel consumption by gasoline turbocharged vehicles. J Clean Prod 154:566–577

    Article  Google Scholar 

  • Del Pero F, Delogu M, Pierini M (2018) Life cycle assessment in automotive sector: a comparative case study of internal combustion engine (ICE) and electric car. Proc Struct Integr 12:521–537

    Google Scholar 

  • Demou E, Hellweg S, Wilson P, Hammond SK, McKone TE (2009) Evaluating indoor exposure modeling alternatives for LCA: a case study in the vehicle repair industry. Environ Sci Technol 43:5804–5810

    Article  Google Scholar 

  • Denholm P, Kulcinski GL (2004) Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers Manag 45:2153–2172

    Article  Google Scholar 

  • Douglas GA, Harrison GF, Chick JP (2008) Life cycle assessment of Seagen marine current turbine. J Eng Marit Environ 222:1–12

    Google Scholar 

  • Douziech M, Hellweg S, Verones F (2016) Are new wave and tidal energy plants green technologies? Environ Sci Technol 50:7870–7878

    Article  Google Scholar 

  • Eckelman MJ, Ciacci L, Kavlak G, Nuss P, Reck B, Graedel TE (2014) Life cycle carbon benefits of aerospace alloy recycling. J Clean Prod 80:38–45

    Article  Google Scholar 

  • Etminan M, Myhre G, Highwood EJ, Shine KP (2016) Radiative forcing of carbon dioxide, methane and nitrous oxide: A significant revision of methane radiative forcing. Geophys Res Lett 45:12814–12823

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  Google Scholar 

  • Figge F, Thorpe AS (2019) The symbiotic rebound effect in the circular economy. Ecol Econ 163:61–69

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guine J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Fortier MP, Roberts GW, Stagg-Williams SM, Sturm BSM (2017) Determination of the life cycle climate change impacts of land use and albedo change in algal biofuel production. Algal Res 28:270–281

    Article  Google Scholar 

  • Frederici M, Ulgati S, Basosi R (2009) Air versus terrestrial transport modalities: an energy and environmental comparison. Energy 24:1493–1503

    Article  Google Scholar 

  • Fridell E, Bäckström S, Stripple H (2019) Considering infrastructure when calculating emissions for freight transportation. Trans Res D Trans Environ 69:346–363

    Article  Google Scholar 

  • Frischknecht R, Büsser S, Krewitt W (2009) Environmental assessment of future technologies: how to trim LCA to fit this goal? Int J Life Cycle Assess 14:584–588

    Article  Google Scholar 

  • Frischknecht R, Benotto E, Dandres T, Heijungs R, Roux C, Schrijvers D, Wernet G, Yang Y, Messmer A, Tschuemperlin L (2017) LCA and decision making: when and how to use consequential LCA. Int J Life Cycle Assess 22:296–301

    Article  Google Scholar 

  • Froese RL, Shonnard DR, Miller CA, Koers KP, Johnson DM (2010) An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States. Biomass Bioenergy 34:251–262

    Article  Google Scholar 

  • Fruergaard T, Astrup T, Ekvall T (2009) Energy use and recovery in waste management and implications for accounting greenhouse gases and global warming contributions. Waste Manag Res 27:724–737

    Article  Google Scholar 

  • Gandreault C, Samson R, Stuart PR (2010) Energy decision making in a pulp and paper mill: selection of LCA system boundary. Int J Life Cycle Assess 15:198–211

    Article  Google Scholar 

  • Gao W, Li T, Tang Z, Peng S, Zhang H (2017) Investigation on the comparative life cycle emissions between newly manufacturing and remanufacturing turbochargers. Proc CIRP 60:750–755

    Article  Google Scholar 

  • Gerbrandt K, Chu PL, Simmonds A, Mullins K, McLean HL, Griffin WM, Saville SA (2016) Life cycle assessment of lignocellulosic ethanol; a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol 38:63–70

    Article  Google Scholar 

  • Gössling S, Garrod B, Aall C, Hille J, Peeters P (2010) Food management in tourism: reducing tourism’s carbon ‘footprint’. Tour Manag 32:534–543

    Article  Google Scholar 

  • Granovskii M, Dincer I, Rosen MA (2006) Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J Power Sources 159:1186–1193

    Article  Google Scholar 

  • Greene DL (2011) Rebound 2007: analysis of U.S. light duty vehicle travel statistics. Energy Policy 41:14–28

    Article  Google Scholar 

  • Gruber LM, Brandstetter CP, Bos U, Lindner JP, Albrecht S (2016) A study of unconsumed and the influence of consumer behaviour. Int J Life Cycle Assess 21:773–784

    Article  Google Scholar 

  • Gustavson O, Ramanathan V (2016) Convergence on climate warming by black carbon aerosols. Proc Natl Acad Sci USA 113:4243–4245

    Article  Google Scholar 

  • Häflinger I, John V, Passer A, Lasvaux S, Hoxha E, Saade MRM, Habert G (2017) Buildings environmental impacts´ sensitivity related to LCA modelling choices construction materials. J Clean Prod 156:805–816

    Article  Google Scholar 

  • Haines A, McMichael AJ, Smith KR, Roberts I, Woodcock J, Markandya A, Armstong BG, Campbell-Lendrum D, Dangour AD, Davies M, Bruce N, Tonne C, Barrett M, Wilkinson P (2009) Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet 374:2104–2114

    Article  Google Scholar 

  • Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152

    Article  Google Scholar 

  • Hallström E, Carlsson-Kanyama A, Börjesson P (2015) Environmental impact of dietary change: a systematic review. J Clean Prod 91:1–11

    Article  Google Scholar 

  • Hannula J, Godinho JRA, Lahmas AA, Luukkanen S, Reuter MA (2010) Simulation-based exergy and LCA analysis of aluminum recycling. Linking predictive physical separation and re-melting process models with specific alloy production. J Sustain Metall 6:174–189

    Article  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymao M, Royer DL, Zachos JC (2008) Target atmospheric CO 2: where should humanity aim. Open Atmos Sci J 2:217–231

    Article  Google Scholar 

  • Harrison GP, Maclean EJ, Karamanlis S, Ochoa LF (2010) Life cycle assessment of the transmission network in Great Britain. Energy Policy 38:3622–3631

    Article  Google Scholar 

  • Harter H, Singh MM, Schneider-Marin P, Lang W, Geyer P (2020) Uncertainty analysis of life cycle energy assessment in early stages of design. Energy Buildings 208:109635. (14pp)

    Article  Google Scholar 

  • Havukainen J, Nguyen MT, Väisänen S, Horttanainen M (2018) Life cycle assessment of small-scale combined heat and power plant: Environmental impacts of different forest biofuels and replacing district heat produced from natural gas. J Clean Prod 172:837–848

    Article  Google Scholar 

  • Heijungs R (2020) On the number of Monte Carlo runs in comparative probabilistic LCA. Int J Life Cycle Assess 25:394–402

    Article  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer, Dordrecht

    Book  Google Scholar 

  • Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK, Huijbregts MA, McKone TE (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment. Environ Sci Technol 43:1670–1679

    Article  Google Scholar 

  • Helmers E, Dietz J, Hartard S (2017) Electric car life cycle assessment based on real world mileage and the electric conversion scenario. Int J Life Cycle Assess 22:15–30

    Article  Google Scholar 

  • Hertel TW, Golub AA, Jones AD, O’Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60:223–231

    Article  Google Scholar 

  • Hertwich E (2009) A concise guide to the biofuels environmental conundrum. J Ind Ecol 13:990–991

    Article  Google Scholar 

  • Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–9611

    Article  Google Scholar 

  • Hertwich EG, Ali S, Ciacci L, Fishman T, Heeren N, Masanet E, Asghari EN, Olivetti E, Pauliuk S, Tu Q, Wolfram P (2019) Material efficiency strategies in reducing greenhouse gas emissions associated with buildings, vehicles and electronics- a review. Environ Res Lett 14:043004. (20pp)

    Article  Google Scholar 

  • Higgs T, Cullen M, Yeo M, Stewart S (2010) Review of LCA methods for ICT products and the impact of high purity and high cost materials. Proceedings of 2010 IEEE Symposium Sustainable System Technology. Arlington, pp 1–6

    Google Scholar 

  • Hijazi O, Munro S, Zerhusen B, Effenberger M (2016) Review of life cycle assessment for biogas production in Europe. Renew Sust Energ Rev 54:1291–1300

    Article  Google Scholar 

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282

    Article  Google Scholar 

  • Hoglmeier K, Weber-Blaschke G, Richter K (2014) Utilization of recovered wood in cascades versus utilization of primary wood- a comparison with life cycle assessment using system expansion. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-014-0774-6

  • Holl KD, Brancalion PHS (2020) Tree planting is not a simple solution. Science 368:580–581

    Article  Google Scholar 

  • Hong J, Shaked S, Rosenbaum RK, Jolliet O (2010) Analytical uncertainty propagation in life cycle inventory and impact assessment: application to an automobile front panel. Int J Life Cycle Assess 15:499–510

    Article  Google Scholar 

  • Hrad M, Piringer M, Kamarad L, Baumann-Stanze K, Huber-Humer M (2014) Multisource emission retrieval within a biogas plant based on inverse dispersion calculations – a real-life example. Environ Monit Assess 186:6251–6262

    Article  Google Scholar 

  • Hu S, Cabeza LF, Yan D (2020) Review and estimation of global halocarbon emissions in the building sector. Energy Buildings 225:110311. (11pp)

    Article  Google Scholar 

  • Huang Y, Bird R, Heidrich O (2009) Development of the life cycle assessment tool for construction and maintenance of asphalt pavements. J Clean Prod 17:283–296

    Article  Google Scholar 

  • Huijbregts MAJ, Norris G, Bretz K, Giroth A, Maurice B, von Bahr B, Weidema B, de Beaufort ASH (2001) Framework for modeling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132

    Article  Google Scholar 

  • Huijbregts MAJ, Gilijamse W, Ragas AMJ, Reijnders L (2003) Evaluating uncertainty in environmental life cycle assessment. A case study comparing two insulation options for a Dutch one family dwelling. Environ Sci Technol 37:2600–2608

    Article  Google Scholar 

  • Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks J, van de Meent D, Ragas AJM, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40:641–648

    Article  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Hendriks HWM, Hungerbühler K, Hendriks AJ (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44:2189–2196

    Article  Google Scholar 

  • Huijbregts MAJ, Steinman ZJN, Elshout PMF. Stam G, Verones F, Viera MDM, Hollander A, Zijp M, van Zelm R (2016) ReCiPe 2016. RIVM Report 2016-0104. RIVM, Bilthoven, The Netherlands (191pp)

    Google Scholar 

  • Ingraffea AR, Wells MT, Santoro RL, Shonkoff SBC (2014) Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proc Natl Acad Sci U S A 111:10955–10960

    Article  Google Scholar 

  • Iordan C, Lausselet C, Cherubini F (2016) Life cycle assessment of biogas power plant with application of different climate metrics and inclusion on near-term climate forcers. J Environ Manag 184:517–527

    Article  Google Scholar 

  • Iribarren D, Hospido A, Moreira MT, Feijoo G (2010) Carbon footprint of canned mussels from a business-to-consumer approach. A starting point for mussel processors and policy makers. Environ Sci Pol 13:509–521

    Article  Google Scholar 

  • Jaramillo P, Samaras C, Wakeley H, Meisterling K (2009) Greenhouse gas implications of using coal for transportation: life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways. Energy Policy 37:2689–2695

    Article  Google Scholar 

  • Johnson E (2008) Disagreement over carbon footprints: a comparison of electric and LPG forklifts. Energy Policy 36:1569–1573

    Article  Google Scholar 

  • Johnson JX, McMillan CA, Keoleian GA (2013) Evaluation of life cycle assessment recycling allocation choices. J Ind Ecol 17:700–711

    Article  Google Scholar 

  • Jones H, Maura P, Domingos T (2017) Life cycle assessment of high-speed rail: a case study in Portugal. Int J Life Cycle Assess 22:410–422

    Article  Google Scholar 

  • Jordaan SM, Xu Q, Hobbs BF (2020) Grid scale life cycle greenhouse gas implications of renewable, storage and carbon pricing. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c1861

  • Jorquera O, Kiperstock A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life cycle-analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  Google Scholar 

  • Jungbluth J, Meili C (2019) Recommendations for calculating of the global warming potential of aviation including radiative forcing index. Int J Life Cycle Assess 24:404–411

    Article  Google Scholar 

  • Jury C, Benetto E, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 34:54–66

    Article  Google Scholar 

  • Kendall A, Chang B, Sharpe B (2009) Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environ Sci Technol 43:7142–7147

    Article  Google Scholar 

  • Khoo HH, Isoni V, Shavatt PN (2018) LCA data selection criteria for a multidisciplinary research team: LCA applied to solvents and chemicals. Sustainable Prod Consump 16:68–87

    Article  Google Scholar 

  • Kleijn R, van der Voet E, Udo de Haes HA (2008) The need for combining IEA and IE tools: the potential effects of a global ban on PVC on climate change. Ecol Econ 65:266–281

    Article  Google Scholar 

  • Kloverpris JH, Mueller (2013) Baseline time accounting: considering land use dynamics when estimating the climate impact of indirect land use change caused by biofuels. Int J. Life Cycle Asses 18:319–330

    Article  Google Scholar 

  • Kloverpris JH, Baltzer K, Nielsen PH (2010) Life cycle inventory modeling of land use induced by crop consumption. Part 2: example of wheat consumption in Brazil, China, Denmark and the USA. Int J Life Cycle Assess 15:90–103

    Article  Google Scholar 

  • Kommalapati R, Kadiyala A, Shahriar MT, Huque Z (2017) Review of the life cycle greenhouse gas emissions for different photovoltaic and concentrating solar power electricity generating systems. Energies 10:350. (18pp)

    Article  Google Scholar 

  • Krook J, Eklund M (2010) The strategic role of recycling centres for environmental performance of waste management systems. Appl Ergon 41:362–367

    Article  Google Scholar 

  • Kulmer V, Seebauer S (2019) How robust are estimates of the rebound effect of energy efficiency improvements? A sensitivity analysis of consumer heterogeneity and elastics. Energy Policy 132:1–14

    Article  Google Scholar 

  • Kushnir D, Sanden BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12:360–375

    Article  Google Scholar 

  • Lamnatou C, Chemisana D, Mateus R, Almeida MG, Silva SM (2018) Review and perspectives of life cycle analysis of solar technologies with emphasis on building-integrated solar systems. Renew Energy 75:833–846

    Article  Google Scholar 

  • Landi D, Germani M, Marconi M (2019) Analysing the environmental sustainability of glass bottles reuse in an Italian wine consortium. Proc CIRP 80:399–404

    Article  Google Scholar 

  • Laurent A, Olsen SI, Hauschild MZ (2010) Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Ann Manuf Technol 59:37–40

    Article  Google Scholar 

  • Laurent A, Espinoza N, Hauschild MZ (2017) LCA of energy systems. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assesment. Springer, Cham, pp 633–668

    Google Scholar 

  • Lee DS, Pitari G, Grewe V, Gierens K, Penner JE, Petzold A, Prather MJ, Schumann U, Bais A, Berntsen T, Iachetti D, Lim LL, Sausen R (2010a) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44:4678–4734

    Article  Google Scholar 

  • Lee J, An S, Cha K, Hur T (2010b) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrog Energy 35:2213–2225

    Article  Google Scholar 

  • Li K, Jiang Z (2016) The impacts of removing energy subsidies on economy-wide rebound effects in China.: An input-output analysis. Energy Policy 98:62–72

    Article  Google Scholar 

  • Li C, Cutforth L, Chai Q, Gan Y (2016) Farming tactics to reduce the carbon footprint of crop cultivation in semi-arid areas. Agron Sustain Dev 36:69. (16pp)

    Article  Google Scholar 

  • Lombardi L, Tribioli L, Cozzalin R, Bella G (2017) Comparative environmental assessment of conventional, electric, hybrid and fuel cells power trains based on LCA. Int J Life Cycle Assess 22:1989–2006

    Article  Google Scholar 

  • Lund H, Mathiesen BV, Christensen P, Schmidt JH (2010) Energy system analysis of marginal electricity supply in consequential LCA. Int J Life Cycle Assess 15:260–271

    Article  Google Scholar 

  • Lund M, Berntsen TK, Fuglesvedt JS (2014) Climate impacts of short-lived climate forcers versus CO2 from biodiesel. A case of the EU on-road sector. Environ Sci Technol 48:14445–14454

    Article  Google Scholar 

  • Maier JM, Sowlati T, Salazar J (2019) Life cycle assessment of forest-based biomass for bioenergy: A case study in British Columbia, Canada. Resour Conserv Recycl 146:598–609

    Article  Google Scholar 

  • Manning FC, Kho LK, Hill TC, Cornulier T, Teh JA (2019) Carbon emissions from palm oil plantations on peat soil. Front Forest Glob Change 2:27. (21pp)

    Google Scholar 

  • Marmiroli B, Messagie M, Dotelli G, van Mierlo J (2018) Electricity generation in LCA of electric vehicles. A review. Appl Sci 8:1384. (35pp)

    Article  Google Scholar 

  • Martens P, Su B, Deblomme S (2019) the ecological pawprint of dogs and cats. BioSci 69:467–474

    Article  Google Scholar 

  • Martinez E, Sanz F, Pellegrini S, Jimenez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energy 34:667–673

    Article  Google Scholar 

  • Mehra P, Baker J, Sojka RE, Bolan N, Desbiolles J, Kirkhan MB, Ross C, Gupta R (2018) A review of tillage practices and their potential to impact soil carbon dynamics. Adv Agron 150:185–230

    Article  Google Scholar 

  • Meinrenken CJ, Lackner KS (2014) Carbon hotspots in in the food and beverage industry: insights from analyzing the product portfolio of a global packaged consumer goods company. J Agric Environ Sci 3:1–16

    Google Scholar 

  • Merchan AL, Leonard A, Limburg S, Mostert M (2019) Life cycle externalities versus external cost. The case of inland freight transport in Belgium. Trans Res D Trans Environ 67:576–595

    Article  Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in life cycle impact of nanoproducts. Environ Sci Technol 43:1256–1263

    Article  Google Scholar 

  • Ming J, **ao C, Cachier H, Qin D, Qin X, Li Z, Pu J (2009) Black carbon (BC) in the snow and glaciers in west China and its potential effects on albedo. Atmos Res 92:114–123

    Article  Google Scholar 

  • Miranda ND, Tuomisto HL, McCulloch MD (2015) Meta-analysis of greenhouse gas emissions from anaerobic digestion processes in dairy farms. Environ Sci Technol 49:5211–5219

    Article  Google Scholar 

  • Mohr N, Meijer A, Huijbregts MAJ, Reijnders L (2009) Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produces with solar energy. Int J Life Cycle Assess 14:225–235

    Article  Google Scholar 

  • Montazeri M, Zaimes GG, Khanna V, Eckelman MJ (2016) Meta-analysis of life cycle energy and greenhouse gas emissions for priority biobased chemicals. ACS Sustain Chem Eng 4:6443–6454

    Article  Google Scholar 

  • Munoz I, Schmidt JH (2016) Methane oxidation, biogenic carbon, and the IPCC´s emission metrics. Proposal for a consistent greenhouse-gas accounting. Int J Life Cycle Assess 21:1069–1075

    Article  Google Scholar 

  • Munoz I, Campra F, Fernandez-Alba AR (2010) Including CO 2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. Int J Life Cycle Assess 15:672–681

    Article  Google Scholar 

  • Murphy DM, Ravishankara AR (2018) Trends and patterns in the contributions to cumulative radiative forcing from different regions of the world. Proc Natl Acad Sci USA 115:13192–13197

    Article  Google Scholar 

  • Muteri V, Cellura M, Cevilo D, Franzitta V, Longo S, Mistretta M, Parisi M (2020) Review on lifr cycle assessment of photovoltaic panels. Energies 13(1):252. (38pp)

    Article  Google Scholar 

  • Myrhe G, Shindell D, Bréon F, Fuglestvedt J, Huang J, Koch D, Lamarque J, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report on the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Nakamura S, Kondo Y (2006) Hybrid LCC of appliances with different energy efficiencies. Int J Life Cycle Assess 11:305–314

    Article  Google Scholar 

  • Nordelöf A, Messagie M, Tillman A, Lundgren Söderman M, van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid and battery electric vehicles- what can we learn form life cycle assessment. Int J Life Cycle Assess 19:1866–1890

    Article  Google Scholar 

  • Nugent D, Sovakool BK (2014) Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey. Energy Policy 65:229–244

    Article  Google Scholar 

  • Nwodo MN, Anumba CJ (2019) A review of life cycle assessment of buildings using a systematic approach. Build Environ 162:106290. (10pp)

    Article  Google Scholar 

  • Palton REO, Smith TM (2015) hotspot scenario analysis: comparative streamlined LCA approaches for green supply chain and procurement decision making. J Ind Ecol 19:427–440

    Article  Google Scholar 

  • Parvatker AG, Tunceroglu H, Sherman HD, Coish P, Anastas P, Zimmerman JB, Eckelman HJ (2019) Gradle-to-gate greenhouse gas emissions for twenty anesthetic active pharmaceutical ingredients based on process scale-up and process design calculations. ACS Sustain Chem Eng 7:6580–6659

    Article  Google Scholar 

  • Pasqualino J, Meneses M, Castells F (2011) The carbon footprint and energy consumption of beverages packaging selection and disposal. J Food Eng 103:357–365

    Article  Google Scholar 

  • Pehl M, Arvesen A, Humpenöder F, Popp A, Hertwich FG, Luderer G (2017) Understanding future emission from low carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat Energy 2:939–945

    Article  Google Scholar 

  • Pelay U, Azarro Pantel C, Fan Y, Luo L (2020) Life cycle assessment of thermochemical energy storage integration concepts for a concentrating solar power plant. Environ Prog Sustain Energy 3:13388. (11pp)

    Google Scholar 

  • Penaloza D, Royne F, Sandin G et al (2019) The influence of system boundaries and baseline on the climate impact assessment of forest products. Int J Life Cycle Assess 24:160–176

    Article  Google Scholar 

  • Peter C, Helming K, Nendel C (2017) Do greenhouse calculations from crop cultivation reflect actual management practices- A review of carbon footprint calculators. Renew Sustain Energy Rev 67:461–476

    Article  Google Scholar 

  • Peters GP, Aamaas B, Lund MT, Solli C, Fuglestvedt JS (2011) Alternative ´global warming´ metrics in life cycle assessment: A case study with transportation data. Environ Sci Technol 45:8633–8641

    Article  Google Scholar 

  • Pohl J, Hilty LM, Finkbeiner M (2019) How LCA contributes to the environmental assessment of higher order effects of ICT applications. J Clean Prod 219:698–712

    Article  Google Scholar 

  • Pukkinen H, Roininen T, Katajajuuri J, Järvinen M (2016) Development of a climate choice meal concept for restaurants based on carbon footprinting. Int J Life Cycle Assess 21:621–630

    Article  Google Scholar 

  • Purohit, Höglund Isaksson L (2017) Global emissions of fluorinated greenhouse gases 2005-2050 with abatement potential and costs. Atmos Chem Phys 17:2795–2816

    Article  Google Scholar 

  • Rajendran K, Murthy GS (2019) Techno-economic and life cycle assessments of anaerobic digestion. A review. Biocatal Agric Biotechnol 20:1017. (12pp)

    Article  Google Scholar 

  • Rajovic V, Kiss F, Maravic N, Bera B (2016) Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields. Energy Convers Manag 118:96–104

    Article  Google Scholar 

  • Rehbitzer G, Buxmann K (2005) The role and implementation of LCA within life cycle management at Alcan. J Clean Prod 13:1327–1335

    Article  Google Scholar 

  • Reijnders L (2009a) Fuels for the future. J Integr Environ Sci 6:279–294

    Article  Google Scholar 

  • Reijnders L (2009b) Are forestation, biochar and landfilled biomass adequate offsets for the climate effect of burning fossil fuels. Energy Policy 37:2839–2841

    Article  Google Scholar 

  • Reijnders L (2017) Greenhouse gas balances of microalgal biofuels. Rec Adv Renew Energy 1:354–364

    Google Scholar 

  • Reijnders L (2019) Biofuels, water footprints and green perspectives. In: Maurice P (ed) Encyclopedia of water: science technology, and society. Wiley, pp 2391–2400

    Google Scholar 

  • Reijnders L (2020a) Is the production of biofuels environmentally sustainable? Encyclopedia of renewable and sustainable materials. Elsevier, Amsterdam, pp 545–550

    Book  Google Scholar 

  • Reijnders L (2020b) Life cycle assessment of micro algae-based processes and products. In: Jacob-Lopez E et al (eds) Handbook of microalgae-based processes and products. Academic Press, London, pp 823–840

    Chapter  Google Scholar 

  • Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport. A seed to wheel perspective. Springer, London

    Google Scholar 

  • Reijnders L, Soret S (2003) Quantification of the environmental impact of different dietary protein choices. Am J Clin Nutr 78:664S–668S

    Article  Google Scholar 

  • Ren X, Hall DL, Vinciguerra T, Benish SE, Stratton PR, Ahn D, Hansford JR, Cohen MD, Sahu S, He H, Grimes C, Salawitch RJ, Ehrman SH, Dickerson RR (2017) Methane emissions from the Marcellus Shale in southwestern Pennsylvania and northern West Virgina basesd on airborne measurement. J. Geophys Res Atmos 122:4639–4653

    Article  Google Scholar 

  • Saidani M, Kendall A, Yannou B, Leroy Y, Cluzel E (2019) Closing the loop on platinum from catalytic converters: contributions from material flow analysis and circularity indicators. J Ind Ecol 23:1143–1158

    Article  Google Scholar 

  • Salemdeeb R, Vivanco DF, Al-Tabbaa A, Zu Ermgassen EKHJ (2017) A holistic approach to the environmental evaluation of food waste prevention. Waste Manag 59:442–450

    Article  Google Scholar 

  • Salieri B, Turner DA, Nowack B, Hischier R (2018) Life cycle assessment of manufactured nanomaterials. Where are we? NanoImpact 10:108–120

    Article  Google Scholar 

  • Sanden B, Kalström M (2007) Positive and negative feedback in consequential life cycle assessment. J Clean Prod 15:1469–1481

    Article  Google Scholar 

  • Sandin G, Peters GH (2018) Environmental impact of textile reuse and recycling. J Clean Prod 184:353–365

    Article  Google Scholar 

  • Sann TE, Palanisamy K, Nazrain M, Ani FN (2006) Study of carbon dioxide emission during combustion of biodiesel. In: International conference on energy and environment 2006, Kajang, pp 65–70

    Google Scholar 

  • Santarius T, Soland M (2018) How technological efficiency improvements change consumer preferences: towards a psychological theory of rebound effects. Ecol Econ 146:414–424

    Article  Google Scholar 

  • Sathre R, O’Connor JO (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Pol 13:104–114

    Article  Google Scholar 

  • Schipper L, Grubb M (2000) On the rebound? Feedback between energy intensities and energy uses in IEA countries. Energy Policy 28:367–388

    Article  Google Scholar 

  • Schmidt H (2009) Carbon footprinting, labelling and life cycle assessment. Int J Life Cycle Assess 14:S6–S9

    Article  Google Scholar 

  • Scott K, Roelich K, Owen A, Barret J (2018) Extending energy efficiency standards to include material use. Clim Pol 18:627–641

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238–1240

    Article  Google Scholar 

  • Sieber P, Ericsson N, Hammar T, Hanson P (2020) Including albedo in time dependent LCA of bioenergy. GCB Bioenergy 12:410–425

    Article  Google Scholar 

  • Siegl S, Laaber M, Holubar P (2011) Green electricity from biomass, Part I: Environmental impacts from direct life cycle emissions. Waste Biomass Valor 2:267–284

    Article  Google Scholar 

  • Sinha R, Olsen LE, Frostell B (2019) Sustainable personal transport modes in a life cycle perspective- public or private. Sustainability 11:7092. (13pp)

    Article  Google Scholar 

  • Skaar C, Jorgensen RB (2013) Integrating human health impact from indoor emissions into an LCA: a case study evaluating the significance of the use stage. Int J Life Cycle Assess 18:636–646

    Article  Google Scholar 

  • Souliotis M, Arnaoutakis N, Panaras G, Kavga A, Papaefthimiou S (2015) Experimental study on life cycle assessment (LCA) of hybrid photovoltaic/thermal (PV/T) solar systems for domestic applications. Renew Energy 126:708–723

    Article  Google Scholar 

  • Spatari S, Bagley DM, McLean HL (2010) Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour Technol 101:654–667

    Article  Google Scholar 

  • Spielman M, Althaus H (2007) Can a prolonged use of a passenger car reduce environmental burdens? Life cycle analysis of Swiss passenger cars. J Clean Prod 15:1122–1134

    Article  Google Scholar 

  • Steinman ZJN, Huijbregts MAJ, Reijnders L (2019) How to define quality in a circular economy? Resour Conserv Recycl 141:362–363

    Article  Google Scholar 

  • Suh S, Yang Y (2014) On the uncanny capabilities of consequential LCA. Int J Life Cycle Assess 19:1179–1184

    Article  Google Scholar 

  • Susca T (2012) Enhancement of life cycle assessment methodology to include the effect of surface albedo on climate change: comparing black and white roofs. Environ Pollut 163:48–54

    Article  Google Scholar 

  • Tabone MD, Gregg JJ, Beckman EJ, Landis AE (2010) Sustainability metrics: life cycle assessment and green design in polymers. Environ Sci Technol 44:8264–8269

    Article  Google Scholar 

  • Tam WYV, Le KN, Tran CNN, Wang JY (2018) A review of contemporary computational programs for building life cycle energy consumption and greenhouse gas emissions assessment. An empirical study in Australia. J Clean Prod 172:4220–4230

    Article  Google Scholar 

  • Thiesen J, Christensen TS, Kristensen TC, Andersen RD, Brunoe B, Gregersen TK, Thrane M, Weidema BP (2008) Rebound effect of price differences. Int J Life Cycle Assess 13:104–114

    Article  Google Scholar 

  • Tilman D, Clark R (2014) Global diets link environmental sustainability and human health. Nature 515:518–522

    Article  Google Scholar 

  • Tingley DD, Davison B (2012) Develo** LCA methodology to account for the environmental benefits of design for deconstruction. Build Environ 57:387–395

    Article  Google Scholar 

  • Tu Q, Eckelman M, Zimmerman J (2017) Meta-analysis and harmonization of life cycle assessment studies for algae biofuels. Environ Sci Technol 51:9418–9432

    Article  Google Scholar 

  • Tu Q, Eckelman M, Zimmerman JB (2018) Harmonized algal biofuel life cycle assessment studies enable direct process train comparison. Appl Energy 224:494–509

    Article  Google Scholar 

  • Turconi R, Boldin A, Astrup T (2013) Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Sustain Energy Rev 28:555–565

    Article  Google Scholar 

  • Turner DA, Williams ID, Kemp S (2015) Greenhouse gas emission factors of source-segregated waste materials. Resour Conserv Recycl 105:186–197

    Article  Google Scholar 

  • Unger N, Beigl P, Höggerl G, Salhofer S (2017) The greenhouse gas benefit of recycling waste electric and electronic equipment above the legal minimum requirement. An Austrian LCA study. J Clean Prod 164:1635–1644

    Article  Google Scholar 

  • Van den Bergh JCJM (2017) Rebound policy in the Paris Agreement: instrument comparison and climate-club revenue. Clim Pol 17:801–813

    Article  Google Scholar 

  • van der Velden NM, Patel MK, Vogtländer JG (2014) LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl or elastane. Int J Life Cycle Assess 19:331–356

    Article  Google Scholar 

  • Vera I, Hoefnagels R, van der Kooij A, Moretti C, Junginger M (2020) A carbon footprint of multi-output biorefineries with international biomass supply: a case study for the Netherlands. Biofuels Bioprod Biorefin 14:198–224

    Article  Google Scholar 

  • Verones F, Hellweg S, Huijbregts MAJ (2016) LC-IMPACT: overall framework. Trondheim (Norway)

    Google Scholar 

  • Vivanco DF, van der Voet E (2014) The rebound effect through industrial ecology´s eyes: a review. Int J Life Cycle Assess 19:1933–1947

    Article  Google Scholar 

  • Walker S, Rothman R (2020) Life cycle assessment of bio-based and fossil-based plastic: A review. J Clean Prod 261:121158. (15pp)

    Article  Google Scholar 

  • Walmsley JD, Godbold DL (2010) Stump harvesting for bioenergy – a review of the environmental impacts. Forestry 83:17–38

    Article  Google Scholar 

  • Wang Z, Han B, Liu M (2016) Measurement of energy rebound effect in households. Evidence from electricity consumption in Bei**g China. Renew Sust Energ Rev 58:852–861

    Article  Google Scholar 

  • Weber CL, Matthews HS (2008) Quantifying the global and distributional aspects of the American household carbon footprint. Ecol Econ 66:379–391

    Article  Google Scholar 

  • Weber CL, Koomey JG, Matthews HS (2010) The energy and climate change implications of different music delivery methods. J Ind Ecol 14:754–769

    Article  Google Scholar 

  • Wei T, Liu Y (2017) Estimations of global rebound effect caused by energy efficiency improvement. Energy Econ 66:27–34

    Article  Google Scholar 

  • Weiss M, Haufe J, Carus M, Brandao M, Bringezu S, Hermann B, Patel MK (2012) A review of environmental impacts of biobased materials. J Ind Ecol 16:S169–S181

    Article  Google Scholar 

  • Wernet G, Conradt S, Isenring HP, Jimenez-Gonzales C, Hungerbühler K (2010) Life cycle assessment of fine chemical production: a case study of pharmaceutical synthesis. Int J Life Cycle Assess 15:294–303

    Article  Google Scholar 

  • Wiedenhofer D, Smetschka B, Akanji L, Jalas M, Haberl H (2018) Household time use, carbon footprints and urban form.: a review of potential contributions of everyday living to the 1.5°C climate target. Curr Opin Environ Sustain 30:7–17

    Article  Google Scholar 

  • Williams ED, Weber CL, Hawkins TR (2009) Hybrid framework for managing uncertainty in life cycle inventories. J Ind Ecol 13:928–944

    Article  Google Scholar 

  • Winiwarter W, Höglund-Isaksson L, Klimont Z, Schöpp W, Amann M (2018) Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ Res Lett 13:014011. (12pp)

    Article  Google Scholar 

  • Wu P, **a B, Zhao X (2014) The importance of use and end-of -life phases to the life cycle greenhouse gas (GHG) emissions of concrete – a review. Renew Sust Energ Rev 37:360–369

    Article  Google Scholar 

  • Yaghoubi J, Yazdanpanah M, Komandantova N (2019) Iranian agriculture advisors´ perception and intention towards biofuel: Green way toward energy security, rural development and climate change mitigation. Renew Energy 130:452–459

    Article  Google Scholar 

  • Zhang Y, McKechnie J, Cormier D, Lyng R, Mabee W, Ogino A, Maclean HR (2010) Life cycle emissions and cost of producing electricity from coal, natural gas and wood pellets in Ontario, Canada. Environ Sci Technol 44:538–544

    Article  Google Scholar 

  • Zhou H, Yang Q, Zhu S, Song Y, Zhang D (2019) Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels. Resour Conserv Recycl 144:74–81

    Article  Google Scholar 

  • Zink T, Geyer R (2017) Circular economy rebound. J Ind Ecol 21:593–602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reijnders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reijnders, L. (2022). Life Cycle Assessment of Greenhouse Gas Emissions. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-030-72579-2_2

Download citation

Publish with us

Policies and ethics

Navigation