Nanocelluloses as a Novel Vehicle for Controlled Drug Delivery

  • Living reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Nanocelluloses are an emerging type of natural nanomaterial with great potential in pharmaceutical and biomedical applications. There are four main types of nanocelluloses: spherical cellulose nanoparticles (SCNP), cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose (BC), all of which may be produced in suitable amounts at a reasonable cost. They possess unique properties such as biodegradability, recyclability, mechanical strength, low toxicity, and tunable amenability to a surface modification to impart new functionalities for selective targeting. They can be produced naturally from different sources (e.g., cotton, woods, agriculture residues) in adequate quantities, making them ideal materials for biomedical, pharmaceutical, and healthcare applications. Nanocelluloses possess a unique structural arrangement with their surface-exposed hydroxyl group, which can be used as anchoring points to install different targeting moieties to deliver the targeted cell therapeutics. This chapter discussed the uses of nanocelluloses and their composites to manufacture films, membranes, aerogels, hydrogels, and large-scale structures that already control the field of drug loading and release. The large surface area of the generated nanocellulose materials allows the delivery of high therapeutics payload to the targeted cells, minimizing the therapeutics’ undesirable side effects. Owing their properties to the high surface-area-to-volume ratio and the high polymerization of nanocellulose, it has the ability for pharmaceutical distribution systems, which have an excellent loading and binding capability for active pharmaceutical ingredients to monitor the release of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, B., Zhang, M., Shen, J., He, Z., Fatehi, P., Ni, Y.J.C.M.C.: Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26(14), 2485–2501 (2019)

    Google Scholar 

  2. Yang, X., Jiang, X., Yang, H., Bian, L., Chang, C., Zhang, L.J.C.P.: Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. 116114 (2020)

    Google Scholar 

  3. Aljabali, A.A., Obeid, M.A.J.N.: Nanotechnology-Asia, inorganic-organic nanomaterials for therapeutics and molecular imaging applications. 10(6), 748–765 (2020)

    Google Scholar 

  4. Dong, S., Roman, M.J.J.O.T.A.C.S.: Fluorescently labeled cellulose nanocrystals for bioimaging applications. 129(45), 13810–13811 (2007)

    Google Scholar 

  5. Lin, N., Huang, J., Chang, P.R., Feng, L., Yu, J.J.C., Biointerfaces, S.B.: Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. 85(2), 270–279 (2011)

    Google Scholar 

  6. Zhang, X., Huang, J., Chang, P.R., Li, J., Chen, Y., Wang, D., Yu, J., Chen, J.J.P.: Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. 51(19), 4398–4407 (2010)

    Google Scholar 

  7. Jackson, J.K., Letchford, K., Wasserman, B.Z., Ye, L., Hamad, W.Y., Burt, H.M.J.I.J.O.N.: The use of nanocrystalline cellulose for the binding and controlled release of drugs. 6, 321 (2011)

    Google Scholar 

  8. Akhlaghi, S.P., Berry, R.C., Tam, K.C.J.C.: Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. 20(4), 1747–1764 (2013)

    Google Scholar 

  9. Zhang, H., Wu, J., Zhang, J., He, J.J.M.: 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. 38(20), 8272–8277 (2005)

    Google Scholar 

  10. Baker, R.J.C.R.O.B.A.A.: Controlled release: mechanisms and rates. 15(18) (1974)

    Google Scholar 

  11. Roman, M.J.I.B.: Toxicity of cellulose nanocrystals: a review. 11(1), 25–33 (2015)

    Google Scholar 

  12. Kumari, A., Yadav, S.K., Yadav, S.C.J.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 75(1), 1–18 (2010)

    Article  CAS  Google Scholar 

  13. Mohammadinejad, R., Karimi, S., Iravani, S., Varma, R.S.J.G.C.: Plant-derived nanostructures: types and applications. 18(1), 20–52 (2016)

    Google Scholar 

  14. Mahmoud, K.A., Mena, J.A., Male, K.B., Hrapovic, S., Kamen, A., Luong, J.H.J.A.A.M.: Interfaces, effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. 2(10), 2924–2932 (2010)

    Google Scholar 

  15. Hua, K., Ålander, E., Lindström, T., Mihranyan, A., Strømme, M., Ferraz, N.J.B.: Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. 16(9), 2787–2795 (2015)

    Google Scholar 

  16. Yildir, E., Kolakovic, R., Genina, N., Trygg, J., Gericke, M., Hanski, L., Ehlers, H., Rantanen, J., Tenho, M., Vuorela, P.J.I.J.O.P.: Tailored beads made of dissolved cellulose—Investigation of their drug release properties. 456(2), 417–423 (2013)

    Google Scholar 

  17. Kovacs, T., Naish, V., O’Connor, B., Blaise, C., Gagné, F., Hall, L., Trudeau, V., Martel, P.J.N.: An ecotoxicological characterization of nanocrystalline cellulose (NCC). 4(3), 255–270 (2010)

    Google Scholar 

  18. Kümmerer, K., Menz, J., Schubert, T., Thielemans, W.J.C.: Biodegradability of organic nanoparticles in the aqueous environment. 82(10), 1387–1392 (2011)

    Google Scholar 

  19. O’Connor, B., Berry, R., Goguen, R.: Commercialization of cellulose nanocrystal (NCC™) production: a business case focusing on the importance of proactive EHS management. In: Nanotechnology environmental health and safety, pp. 225–246. Elsevier (2014)

    Google Scholar 

  20. Ntoutoume, G.M.N., Granet, R., Mbakidi, J.P., Brégier, F., Léger, D.Y., Fidanzi-Dugas, C., Lequart, V., Joly, N., Liagre, B., Chaleix, V.J.B., Letters, M.C.: Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. 26(3), 941–945 (2016)

    Google Scholar 

  21. Wang, H., He, J., Zhang, M., Tam, K.C., Ni, P.J.P.C.: A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. 6(23), 4206–4209 (2015)

    Google Scholar 

  22. Dong, S., Cho, H.J., Lee, Y.W., Roman, M.J.B.: Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. 15(5), 1560–1567 (2014)

    Google Scholar 

  23. Dong, S., Hirani, A.A., Colacino, K.R., Lee, Y.W., Roman, M.J.N.L.: Cytotoxicity and cellular uptake of cellulose nanocrystals. 2(03), 1241006 (2012)

    Google Scholar 

  24. Roman, M., Dong, S., Hirani, A., Lee, Y.W.: Cellulose nanocrystals for drug delivery. ACS Publications (2009)

    Google Scholar 

  25. Espino-Pérez, E., Domenek, S., Belgacem, N., Sillard, C., Bras, J.J.B.: Green process for chemical functionalization of nanocellulose with carboxylic acids. 15(12), 4551–4560 (2014)

    Google Scholar 

  26. Mishra, R.K., Sabu, A., Tiwari, S.K.J.J.O.S.C.S.: Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. 22(8), 949–978 (2018)

    Google Scholar 

  27. Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B., Li, Y.J.C.P.: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. 188, 27–36 (2018)

    Google Scholar 

  28. Lacroix, M., Khan, R., Senna, M., Sharmin, N., Salmieri, S., Safrany, A.J.R.P.: Chemistry, radiation grafting on natural films. 94, 88–92 (2014)

    Google Scholar 

  29. Lin, R., Li, A., Zheng, T., Lu, L., Cao, Y.J.R.A.: Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. 5(100), 82027–82033 (2015)

    Google Scholar 

  30. Chin, K.M., Sung Ting, S., Ong, H.L., Omar, M.J.J.O.A.P.S.: Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: a review. 135(13), 46065 (2018)

    Google Scholar 

  31. Yu, M., Gu, G., Meng, W.-D., Qing, F.-L.J.A.S.S.: Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. 253(7), 3669–3673 (2007)

    Google Scholar 

  32. Qiao, H., Zhou, Y., Yu, F., Wang, E., Min, Y., Huang, Q., Pang, L., Ma, T.J.C.: Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. 141, 297–303 (2015)

    Google Scholar 

  33. Kaboorani, A., Riedl, B.J.I.C.: Products, surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. 65, 45–55 (2015)

    Google Scholar 

  34. Salajková, M., Berglund, L.A., Zhou, Q.J.J.O.M.C.: Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. 22(37), 19798–19805 (2012)

    Google Scholar 

  35. Shang, W., Huang, J., Luo, H., Chang, P.R., Feng, J., **e, G.J.C.: Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. 20(1), 179–190 (2013)

    Google Scholar 

  36. Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V., Marinković, A.J.A.J.O.C.: Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. 12(8), 4675–4693 (2019)

    Google Scholar 

  37. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M.J.C.: Adsorption of Ni (II), Cu (II) and Cd (II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. 21(3), 1471–1487 (2014)

    Google Scholar 

  38. Zhu, W., Liu, L., Liao, Q., Chen, X., Qian, Z., Shen, J., Liang, J., Yao, J.J.C.: Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. 23(6), 3785–3797 (2016)

    Google Scholar 

  39. Dong, C., Zhang, H., Pang, Z., Liu, Y., Zhang, F.J.B.T.: Sulfonated modification of cotton linter and its application as adsorbent for high-efficiency removal of lead (II) in effluent. 146, 512–518 (2013)

    Google Scholar 

  40. Ranby, B.J.A.C.S.: Aqueous colloidal solutions of cellulose micelles, vol. 3, pp. 649–650. Munksgaard Int Publ Ltd, Copenhagen (1949)

    Google Scholar 

  41. Lin, N., Dufresne, A.J.E.P.J.: Nanocellulose in biomedicine: current status and future prospect. 59, 302–325 (2014)

    Google Scholar 

  42. Jawaid, M., Mohammad, F.: Nanocellulose and nanohydrogel matrices: biotechnological and biomedical applications. Wiley (2017)

    Book  Google Scholar 

  43. Wiedersberg, S., Guy, R.H.J.J.O.C.R.: Transdermal drug delivery: 30+ years of war and still fighting! 190, 150–156 (2014)

    Google Scholar 

  44. Dhiman, S., Singh, T.G., Rehni, A.K.J.I.J.P.P.S.: Transdermal patches: a recent approach to new drug delivery system. 3(5), 26–34 (2011)

    Google Scholar 

  45. Mohanta, V., Madras, G., Patil, S.J.A.A.M.: Interfaces, Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. 6(22), 20093–20101 (2014)

    Google Scholar 

  46. Lin, N., Dufresne, A.J.B.: Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. 14(3), 871–880 (2013)

    Google Scholar 

  47. Kolakovic, R., Laaksonen, T., Peltonen, L., Laukkanen, A., Hirvonen, J.J.I.J.O.P.: Spray-dried nanofibrillar cellulose microparticles for sustained drug release. 430(1–2), 47–55 (2012)

    Google Scholar 

  48. Müller, A., Ni, Z., Hessler, N., Wesarg, F., Müller, F.A., Kralisch, D., Fischer, D.J.J.: The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. 102(2), 579–592 (2013)

    Google Scholar 

  49. Fu, L., Zhang, J., Yang, G.J.C.P.: Present status and applications of bacterial cellulose-based materials for skin tissue repair. 92(2), 1432–1442 (2013)

    Google Scholar 

  50. Alkhatib, Y., Dewaldt, M., Moritz, S., Nitzsche, R., Kralisch, D., Fischer, D.J.E.J.O.P.: Biopharmaceutics, controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. 112, 164–176 (2017)

    Google Scholar 

  51. Sarkar, G., Orasugh, J.T., Saha, N.R., Roy, I., Bhattacharyya, A., Chattopadhyay, A.K., Rana, D., Chattopadhyay, D.J.N.J.O.C.: Cellulose nanofibrils/chitosan based transdermal drug delivery vehicle for controlled release of ketorolac tromethamine. 41(24), 15312–15319 (2017)

    Google Scholar 

  52. Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., Laaksonen, T.J.E.J.O.P.: Biopharmaceutics, Nanofibrillar cellulose films for controlled drug delivery. 82(2), 308–315 (2012)

    Google Scholar 

  53. Orasugh, J.T., Saha, N.R., Rana, D., Sarkar, G., Mollick, M.M.R., Chattoapadhyay, A., Mitra, B.C., Mondal, D., Ghosh, S.K., Chattopadhyay, D.J.I.C.: Products, Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: a novel material with potential for application in packaging and transdermal drug delivery system. 112, 633–643 (2018)

    Google Scholar 

  54. Toyoda, M., Hama, S., Ikeda, Y., Nagasaki, Y., Kogure, K.J.I.J.O.P.: Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. 483(1–2), 110–114 (2015)

    Google Scholar 

  55. Choi, J., Choi, M.-K., Chong, S., Chung, S.-J., Shim, C.-K., Kim, D.-D.J.I.J.O.P.: Effect of fatty acids on the transdermal delivery of donepezil: in vitro and in vivo evaluation. 422(1–2), 83–90 (2012)

    Google Scholar 

  56. Burt, H.M., Jackson, J.K., Hamad, W.Y.: Binding drugs with nanocrystalline cellulose (ncc). Google Patents (2014)

    Google Scholar 

  57. Choi, C.A., Lee, J.E., Mazrad, Z.A.I., In, I., Jeong, J.H., Park, S.Y.J.J.O.I.: Chemistry, e., Redox-and pH-responsive fluorescent carbon nanoparticles-MnO2-based FRET system for tumor-targeted drug delivery in vivo and in vitro. 63, 208–219 (2018)

    Google Scholar 

  58. Emaraa, L.H., El-Ashmawy, A.A., Tahaa, N.F., El-Shaffeib, K.A., Mahdeyb, E.-S.M., Elkhollyc, H.K.J.J.O.A.P.S.: Nano-crystalline cellulose as a novel tablet excipient for improving solubility and dissolution of meloxicam. 6(02), 032–043 (2016)

    Google Scholar 

  59. Guo, T., Pei, Y., Tang, K., He, X., Huang, J., Wang, F.J.J.O.A.P.S.: Mechanical and drug release properties of alginate beads reinforced with cellulose. 134(8) (2017)

    Google Scholar 

  60. Patil, M.D., Patil, V.D., Sapre, A.A., Ambone, T.S., Torris, A.T.A., Shukla, P.G., Shanmuganathan, K.J.A.S.C.: Engineering, tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. 6(7), 9208–9217 (2018)

    Google Scholar 

  61. Supramaniam, J., Adnan, R., Kaus, N.H.M., Bushra, R.J.I.J.O.B.M.: Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. 118, 640–648 (2018)

    Google Scholar 

  62. Hivechi, A., Bahrami, S.H., Siegel, R.A.J.M.S.: Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. 94, 929–937 (2019)

    Google Scholar 

  63. Ahmad, N., Amin, M.C.I.M., Mahali, S.M., Ismail, I., Chuang, V.T.G.J.M.P.: Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. 11(11), 4130–4142 (2014)

    Google Scholar 

  64. Villanova, J., Ayres, E., Carvalho, S., Patrício, P., Pereira, F., Oréfice, R.J.E.J.O.P.S.: Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. 42(4), 406–415 (2011)

    Google Scholar 

  65. Amin, M., Abadi, A.G., Ahmad, N., Katas, H., Jamal, J.A.J.S.M.: Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. 41(5), 561–568 (2012)

    Google Scholar 

  66. **e, J., Li, J.J.J.O.B.: Bioproducts, smart drug delivery system based on nanocelluloses. 2(1), 1–3 (2017)

    Google Scholar 

  67. Peppas, N.A., Narasimhan, B.J.J.O.C.R.: Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. 190, 75–81 (2014)

    Google Scholar 

  68. Siepmann, J., Siepmann, F.J.I.J.O.P.: Mathematical modeling of drug dissolution. 453(1), 12–24 (2013)

    Google Scholar 

  69. Thomas, P., Duolikun, T., Rumjit, N.P., Moosavi, S., Lai, C.W., Bin Johan, M.R., Fen, L.B.: Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J. Mech. Behav. Biomed. Mater. 110, 103884 (2020)

    Article  CAS  Google Scholar 

  70. Endes, C., Camarero-Espinosa, S., Mueller, S., Foster, E.J., Petri-Fink, A., Rothen-Rutishauser, B., Weder, C., Clift, M.J.: A critical review of the current knowledge regarding the biological impact of nanocellulose. J. Nanobiotechnol. 14(1), 78 (2016)

    Article  CAS  Google Scholar 

  71. Bianchet, R.T., Vieira Cubas, A.L., Machado, M.M., Siegel Moecke, E.H.: Applicability of bacterial cellulose in cosmetics – bibliometric review. Biotechnol. Rep. 27, e00502 (2020)

    Article  Google Scholar 

  72. Morais, E.S., Silva, N., Sintra, T.E., Santos, S.A.O., Neves, B.M., Almeida, I.F., Costa, P.C., Correia-Sá, I., Ventura, S.P.M., Silvestre, A.J.D., Freire, M.G., Freire, C.S.R.: Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydr. Polym. 206, 187–197 (2019)

    Article  CAS  Google Scholar 

  73. Pacheco, G., de Mello, C.V., Chiari-Andréo, B.G., Isaac, V.L.B., Ribeiro, S.J.L., Pecoraro, É., Trovatti, E.: Bacterial cellulose skin masks-properties and sensory tests. J. Cosmet. Dermatol. 17(5), 840–847 (2018)

    Article  Google Scholar 

  74. Aramwit, P., Bang, N.: The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment. BMC Biotechnol. 14, 104 (2014)

    Article  Google Scholar 

  75. Bongao, H.C., Gabatino, R.R.A., Arias, C.F.H., Magdaluyo, E.R.: Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations. Mater. Today: Proc. 22, 275–280 (2020)

    CAS  Google Scholar 

  76. Feng, X., Zhao, Y., Jiang, Y., Miao, M., Cao, S., Fang, J.: Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr. Polym. 161, 253–260 (2017)

    Article  CAS  Google Scholar 

  77. Luo, H., Cha, R., Li, J., Hao, W., Zhang, Y., Zhou, F.: Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohydr. Polym. 224, 115144 (2019)

    Article  CAS  Google Scholar 

  78. Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., Svorcik, V.: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials (Basel). 9(2), 164 (2019)

    Google Scholar 

  79. Osorio, M., Fernández-Morales, P., Gañán, P., Zuluaga, R., Kerguelen, H., Ortiz, I., Castro, C.: Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: effect of processing methods, pore size, and surface area. J. Biomed. Mater. Res. A. 107(2), 348–359 (2019)

    Article  CAS  Google Scholar 

  80. Fu, L., Zhou, P., Zhang, S., Yang, G.: Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater. Sci. Eng. C Mater. Biol. Appl. 33(5), 2995–3000 (2013)

    Article  CAS  Google Scholar 

  81. Chantereau, G., Sharma, M., Abednejad, A., Vilela, C., Costa, E.M., Veiga, M., Antunes, F., Pintado, M.M., Sèbe, G., Coma, V., Freire, M.G., Freire, C.S.R., Silvestre, A.J.D.: Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J. Mol. Liq. 302, 112547 (2020)

    Article  CAS  Google Scholar 

  82. Fonseca, D.F.S., Vilela, C., Pinto, R.J.B., Bastos, V., Oliveira, H., Catarino, J., Faísca, P., Rosado, C., Silvestre, A.J.D., Freire, C.S.R.: Bacterial nanocellulose-hyaluronic acid microneedle patches for skin applications: in vitro and in vivo evaluation. Mater. Sci. Eng. C. 118, 111350 (2020)

    Article  Google Scholar 

  83. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.J.J.: In vivo biocompatibility of bacterial cellulose. 76(2), 431–438 (2006)

    Google Scholar 

  84. Silva, E.C.D.: Hidroxiapatita Sintética em alvéolo dentário após exodontia em Felis catus: estudo clínico, radiológico e histomorfométrico. (2009)

    Google Scholar 

  85. Barud, H.J.S.P.R.F.F.: Brazil, Development and evaluation of biocure obtained from bacterial cellulose and standardized extract of propolis (EPP-AF) for the treatment of burns and/or skin lesions. (2009)

    Google Scholar 

  86. Novaes Jr., A.B.., Novaes, A.B..J.I.J.: Soft tissue management for primary closure in guided bone regeneration: surgical technique and case report. 12(1), 84–7 (1997)

    Google Scholar 

  87. Novaes Jr., A.B.., Novaes, A.B..J.I.J.: IMZ implants placed into extraction sockets in association with membrane therapy (Gengiflex) and porous hydroxyapatite: a case report. 7(4), 536–40 (1992)

    Google Scholar 

  88. Dahlin, C., Linde, A., Gottlow, J., Nyman, S.J.P.: Healing of bone defects by guided tissue regeneration. 81(5), 672–676 (1988)

    Google Scholar 

  89. Hokkanen, S., Bhatnagar, A., Sillanpää, M.J.W.R.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. 91, 156–173 (2016)

    Google Scholar 

  90. Najib, N., Christodoulatos, C.J.J.O.H.M.: Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions. 367, 256–266 (2019)

    Google Scholar 

  91. Metreveli, G., Wågberg, L., Emmoth, E., Belák, S., Strømme, M., Mihranyan, A.: A size-exclusion nanocellulose filter paper for virus removal. Adv. Healthc. Mater. 3, 1546–1550 (2014)

    Article  CAS  Google Scholar 

  92. Mautner, A., Lee, K.-Y., Lahtinen, P., Hakalahti, M., Tammelin, T., Li, K., Bismarck, A.J.C.C.: Nanopapers for organic solvent nanofiltration. 50(43), 5778–5781 (2014)

    Google Scholar 

  93. Manukyan, L.; Li, P.; Gustafsson, S.; Mihranyan, A. J. J. o. M. S., Growth media filtration using nanocellulose-based virus removal filter for upstream biopharmaceutical processing. 2019, 572, 464–474

    Google Scholar 

  94. Karim, Z., Svedberg, A., Lee, K.-Y., Khan, M.J.J.S.R.: Processing-structure-property correlation understanding of microfibrillated cellulose based dimensional structures for ferric ions removal. 9(1), 1–12 (2019)

    Google Scholar 

  95. Zhang, Y., Lim, C.T., Ramakrishna, S., Huang, Z.-M.J.J.: Recent development of polymer nanofibers for biomedical and biotechnological applications. 16(10), 933–946 (2005)

    Google Scholar 

  96. Orasugh, J.T., Sarkar, G., Saha, N.R., Das, B., Bhattacharyya, A., Das, S., Mishra, R., Roy, I., Chattoapadhyay, A., Ghosh, S.K.J.I.: Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. 124, 235–245 (2019)

    Google Scholar 

  97. Abo-Elseoud, W.S., Hassan, M.L., Sabaa, M.W., Basha, M., Hassan, E.A., Fadel, S.M.J.I.: Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. 111, 604–613 (2018)

    Google Scholar 

  98. McKee, J.R., Appel, E.A., Seitsonen, J., Kontturi, E., Scherman, O.A., Ikkala, O.J.A.F.M.: Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. 24(18), 2706–2713 (2014)

    Google Scholar 

  99. Åhlén, M., Tummala, G.K., Mihranyan, A.J.I.J.O.P.: Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. 536(1), 73–81 (2018)

    Google Scholar 

  100. Aouada, F.A., de Moura, M.R.R., Orts, W.J., Mattoso, L.H.J.J.O.: Preparation and characterization of novel micro-and nanocomposite hydrogels containing cellulosic fibrils. 59(17), 9433–9442 (2011)

    Google Scholar 

  101. Yang, J., Han, C.-R., Zhang, X.-M., Xu, F., Sun, R.-C.J.M.: Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. 47(12), 4077–4086 (2014)

    Google Scholar 

  102. Yang, J., Zhao, J.-J., Han, C.-R., Duan, J.-F., Xu, F., Sun, R.-C.J.C.: Tough nanocomposite hydrogels from cellulose nanocrystals/poly (acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG. 21(1), 541–551 (2014)

    Google Scholar 

  103. Wang, K., Nune, K., Misra, R.J.A.B..: The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. 36, 143–151 (2016)

    Google Scholar 

  104. Li, W., Lan, Y., Guo, R., Zhang, Y., Xue, W., Zhang, Y.J.J.: In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. 29(6), 882–893 (2015)

    Google Scholar 

  105. Mauricio, M.R., da Costa, P.G., Haraguchi, S.K., Guilherme, M.R., Muniz, E.C., Rubira, A.F.J.C.P.: Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. 115, 715–722 (2015)

    Google Scholar 

  106. Laurén, P., Lou, Y.-R., Raki, M., Urtti, A., Bergström, K., Yliperttula, M.J.E.J.: Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. 65, 79–88 (2014)

    Google Scholar 

  107. Yang, J., Zhang, X., Ma, M., Xu, F.J.A.M.L.: Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly (ethylene glycol). 4(8), 829–833 (2015)

    Google Scholar 

  108. Kistler, S.S.J.N.: Coherent expanded aerogels and jellies. 127(3211), 741–741 (1931)

    Google Scholar 

  109. Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.; Rawashdeh, A.-M. M. J. N. l., Nanoengineering strong silica aerogels. 2002, 2 (9), 957–960

    Google Scholar 

  110. Maleki, H.J.C.E.J.: Recent advances in aerogels for environmental remediation applications: a review. 300, 98–118 (2016)

    Google Scholar 

  111. Korhonen, J.T., Hiekkataipale, P., Malm, J., Karppinen, M., Ikkala, O., Ras, R.H.J.A.: Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. 5(3), 1967–1974 (2011)

    Google Scholar 

  112. Klemm, D.: Polysaccharides II, vol. 205. Springer (2006)

    Book  Google Scholar 

  113. Bodin, A., Ahrenstedt, L., Fink, H., Brumer, H., Risberg, B., Gatenholm, P.J.B.: Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. 8(12), 3697–3704 (2007)

    Google Scholar 

  114. Díez, I., Eronen, P., Österberg, M., Linder, M.B., Ikkala, O., Ras, R.H.J.M.B.: Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. 11(9), 1185–1191 (2011)

    Google Scholar 

  115. Zimmermann, K.A., LeBlanc, J.M., Sheets, K.T., Fox, R.W., Gatenholm, P.J.M.S.: Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. 31(1), 43–49 (2011)

    Google Scholar 

  116. Muller, D., Silva, J.P., Rambo, C., Barra, G., Dourado, F., Gama, F.J.J.: Polymer edition, Neuronal cells’ behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. 24(11), 1368–1377 (2013)

    Google Scholar 

  117. Feldmann, E.-M., Sundberg, J.F., Bobbili, B., Schwarz, S., Gatenholm, P., Rotter, N.J.J.: Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. 28(4), 626–640 (2013)

    Google Scholar 

  118. Fontana, J., De Souza, A., Fontana, C., Torriani, I., Moreschi, J., Gallotti, B., De Souza, S., Narcisco, G., Bichara, J., Farah, L.J.A.B..: Biotechnology, Acetobacter cellulose pellicle as a temporary skin substitute. 24(1), 253–264 (1990)

    Google Scholar 

  119. Cai, J., Kimura, S., Wada, M., Kuga, S.J.B.: Nanoporous cellulose as metal nanoparticles support. 10(1), 87–94 (2009)

    Google Scholar 

  120. He, J., Kunitake, T., Watanabe, T.J.C.: Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template. 6, 795–796 (2005)

    Google Scholar 

  121. Zhang, S., Yang, X., Tang, B., Yuan, L., Wang, K., Liu, X., Zhu, X., Li, J., Ge, Z., Chen, S.J.C.E.J.: New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. 336, 123–132 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alaa A. A. Aljabali or Murtaza M. Tambuwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aljabali, A.A.A. et al. (2021). Nanocelluloses as a Novel Vehicle for Controlled Drug Delivery. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-62976-2_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62976-2_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62976-2

  • Online ISBN: 978-3-030-62976-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation