Assessment of Kidney Function in Children, Adolescents, and Young Adults

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Kidney function undergoes developmental changes, including postnatal adaptation of nephron recruitment until approximately 18 months of age and glomerular hypertrophy thereafter. Accurate assessment of kidney function across post-conceptual age is important and needs to incorporate factors associated with the person (e.g., body habitus, growth, muscle mass, health status, illnesses, inflammation, and intra-personal variability), measurement technique (e.g., endogenous biomarkers, exogenous techniques, or imaging studies), and interpretation of measurements (e.g., equation used, correction factors, indexing to body surface area, or extracellular volume).

While nephron endowment would be the most important factor for an accurate clearance calculation of more than 60% of drugs processed by the kidney, this cannot be assessed directly. Effective renal plasma flow (ERPF) may be better to assess nephron endowment as it does not undergo autoregulation or hyperfiltration, in contrast to glomerular filtration. However, glomerular filtration rate (GFR) is still the best surrogate tool for kidney function assessment.

The gold standard to measure kidney function is inulin clearance; however, this is impractical. Measurement of GFR using either radiolabeled or cold exogeneous substances such as iohexol, iothalamate, etc. now serve as replacement for more accurate GFR determinations. In the clinical routine, endogenous markers are used, especially serum creatinine and cystatin C. Health care providers need to know when to use which endogenous biomarker(s).

In this chapter we will discuss historical aspects of kidney function measurement, exogenous and endogenous methods, and the technical aspects of assessment or interpretation in health and sickness, from the neonate to the transition-age periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AYA:

Adolescents and young adults

CAKUT:

Congenital anomalies of the kidneys and urinary tract

CKD:

Chronic kidney disease

CysC:

Cystatin C

DMSA:

Dimercapto succinic acid

DTPA:

Diethylenetriamine penta-acetic acid

EDTA:

Ethylenediamine tetra-acetic acid

eGFR:

Estimated glomerular filtration rate

ERPF:

Effective renal plasma flow

GFR:

Glomerular filtration rate

MAG3:

Mercaptuacetyltriglycine

PAH:

Paraaminohippuric acid

References

  1. Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol. 2014;29(2):183–92.

    Article  PubMed  Google Scholar 

  2. Filler G, Kirpalani A, Urquhart BL. Handling of drugs in children with abnormal renal function. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein S, editors. Pediatr Nephrol. Berlin Heidelberg: Springer; 2015. p. 1–28.

    Google Scholar 

  3. Glassock RJ, Winearls C. Ageing and the glomerular filtration rate: truths and consequences. Trans Am Clin Climatol Assoc. 2009;120:419–28.

    PubMed  PubMed Central  Google Scholar 

  4. Smith HW. Principles of renal physiology. New York: Oxford University Press; 1956. p. 237.

    Google Scholar 

  5. Wolter H. Friedrich Wohler’s synthesis of urea. Med Monatsschr. 1957;11(3):173–7.

    CAS  PubMed  Google Scholar 

  6. Moller E, McIntosh JF, Van Slyke DD. Studies of urea excretion. IV: relationship between urine volume and rate of urea excretion by patients with Bright’s disease. J Clin Invest. 1928;6(3):485–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McIntosh JF, Moller E, Van Slyke DD. Studies of urea excretion. III: the influence of body size on urea output. J Clin Invest. 1928;6(3):467–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moller E, McIntosh JF, Van Slyke DD. Studies of urea excretion. II: relationship between urine volume and the rate of urea excretion by Normal adults. J Clin Invest. 1928;6(3):427–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Slyke DD, McIntosh JF, Moller E, Hannon RR, Johnston C. Studies of urea excretion: VI. Comparison of the blood urea clearance with certain other measures of renal function. J Clin Invest. 1930;8(3):357–74.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Filler G, Sharma AP. How to monitor renal function in pediatric solid organ transplant recipients. Pediatr Transplant. 2008;12(4):393–401.

    Article  PubMed  Google Scholar 

  11. Richards AN, Westfall BB, Bott PA. Renal excretion of inulin, creatinine and xylose in normal dogs. Proc Soc Exp Biol Med. 1934;73:32–5.

    Google Scholar 

  12. Shannon JA, Smith HW. The excretion of inulin, xylose and urea by Normal and Phlorizinized man. J Clin Invest. 1935;14(4):393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Filler G. B√∂kenkamp A, Hofmann W, Le Bricon T, Mart√≠nez-Br√∫ C, Grubb A. Cystatin C as a marker of GFR – history, indications, and future research. Clin Biochem. 2005;38(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Navar LG. The legacy of Homer W. Smith: mechanistic insights into renal physiology. J Clin Invest. 2004;114(8):1048–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol. 2011;6(2):274–80.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bokenkamp A. Kidney function itself, and not cystatin C, is correlated with height and weight. Kidney Int. 2005;67(2):777–8. author reply 8-9

    Article  PubMed  Google Scholar 

  17. Huseman D, Gellermann J, Vollmer I, Ohde I, Devaux S, Ehrich JH, et al. Long-term prognosis of hemolytic uremic syndrome and effective renal plasma flow. Pediatr Nephrol. 1999;13(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  18. Filler G, Bhayana V, Schott C, Diaz-Gonzalez de Ferris ME. How should we assess renal function in neonates and infants? Acta Paediatr. 2020;

    Google Scholar 

  19. Bird NJ, Henderson BL, Lui D, Ballinger JR, Peters AM. Indexing glomerular filtration rate to suit children. J Nucl Med. 2003;44(7):1037–43.

    PubMed  Google Scholar 

  20. Peters AM, Snelling HL, Glass DM, Love S, Bird NJ. Estimated lean body mass is more appropriate than body surface area for scaling glomerular filtration rate and extracellular fluid volume. Nephron Clin Pract. 2010;116(1):c75–80.

    Article  PubMed  Google Scholar 

  21. Filler G, Guerrero-Kanan R, Alvarez-Elias AC. Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr. 2016;28(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  22. Peters AM. The kinetic basis of glomerular filtration rate measurement and new concepts of indexation to body size. Eur J Nucl Med Mol Imaging. 2004;31(1):137–49.

    Article  CAS  PubMed  Google Scholar 

  23. Peters AM, Snelling HL, Glass DM, Bird NJ. Estimation of lean body mass in children. Br J Anaesth. 2011;106(5):719–23.

    Article  CAS  PubMed  Google Scholar 

  24. Furth S, Pierce C, Hui WF, White C, Wong C, Schaefer F, et al. Estimating time to end stage renal disease in children with CKD. Am J Kidney Dis. 2018;

    Google Scholar 

  25. Waldum-Grevbo B. What physicians need to know about renal function in outpatients with heart failure. Cardiology. 2015;131(2):130–8.

    Article  PubMed  Google Scholar 

  26. Kurishima C, Masutani S, Kuwata S, Iwamoto Y, Saiki H, Ishido H, et al. Cystatin C and body surface area are major determinants of the ratio of N-terminal pro-brain natriuretic peptide to brain natriuretic peptide levels in children. J Cardiol. 2015;66(2):175–80.

    Article  PubMed  Google Scholar 

  27. Filler G, Lee M. Educational review: measurement of GFR in special populations. Pediatr Nephrol. 2018;33(11):2037–46.

    Article  PubMed  Google Scholar 

  28. Bokenkamp A, Herget-Rosenthal S. Urinary cystatin C as a marker of GFR? A word of caution. Pediatr Nephrol. 2004;19(12):1429.

    Article  PubMed  Google Scholar 

  29. Zhang P, Kim W, Zhou L, Wang N, Ly LH, McMurray DN, et al. Dietary fish oil inhibits antigen-specific murine Th1 cell development by suppression of clonal expansion. J Nutr. 2006;136(9):2391–8.

    Article  CAS  PubMed  Google Scholar 

  30. Visser FW, Muntinga JH, Dierckx RA, Navis G. Feasibility and impact of the measurement of extracellular fluid volume simultaneous with GFR by 125I-iothalamate. Clin J Am Soc Nephrol. 2008;3(5):1308–15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hermos CR, Janineh M, Han LL, McAdam AJ. Shiga toxin-producing Escherichia coli in children: diagnosis and clinical manifestations of O157:H7 and non-O157:H7 infection. J Clin Microbiol. 2011;49(3):955–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Sixt R, et al. Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med. 2001;28(3):BP31–6.

    CAS  PubMed  Google Scholar 

  33. Rehling M, Nielsen LE, Marqversen J. Protein binding of 99Tcm-DTPA compared with other GFR tracers. Nucl Med Commun. 2001;22(6):617–23.

    Article  CAS  PubMed  Google Scholar 

  34. Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis. 2011;8(4):465–87.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Barbour GL, Crumb CK, Boyd CM, Reeves RD, Rastogi SP, Patterson RM. Comparison of inulin, iothalamate, and 99mTc-DTPA for measurement of glomerular filtration rate. J Nucl Med. 1976;17(4):317–20.

    CAS  PubMed  Google Scholar 

  36. Brouhard BH, Travis LB, Cunningham RJ 3rd, Berger M, Carvajal HF. Simultaneous iothalamate, creatinine, and urea clearances in children with renal disease. Pediatrics. 1977;59(2):219–23.

    Article  CAS  PubMed  Google Scholar 

  37. Bajaj G, Alexander SR, Browne R, Sakarcan A, Seikaly MG. 125Iodine-iothalamate clearance in children. A simple method to measure glomerular filtration. Pediatr Nephrol. 1996;10(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  38. Odlind B, Hallgren R, Sohtell M, Lindstrom B. Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int. 1985;27(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  39. Sharma AK, Mills MS, Grey VL, Drummond KN. Infusion clearance of subcutaneous iothalamate versus standard renal clearance. Pediatr Nephrol. 1997;11(6):711–3.

    Article  CAS  PubMed  Google Scholar 

  40. Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med. 2003;348(16):1517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krutzen E, Back SE, Nilsson-Ehle P. Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest. 1990;50(3):279–83.

    Article  CAS  PubMed  Google Scholar 

  42. Seegmiller JC, Burns BE, Schinstock CA, Lieske JC, Larson TS. Discordance between Iothalamate and Iohexol urinary clearances. AJKD. 2016;

    Google Scholar 

  43. Medeiros FS, Sapienza MT, Prado ES, Agena F, Shimizu MH, Lemos FB, et al. Validation of plasma clearance of 51Cr-EDTA in adult renal transplant recipients: comparison with inulin renal clearance. Transpl Int. 2009;22(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Qiu X, Lv L, Wang C, Ye Z, Li S, et al. Correlation between serum lipid levels and measured glomerular filtration rate in Chinese patients with chronic kidney disease. PLoS One. 2016;11(10):e0163767.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bjornstad P, Cherney DZ, Maahs DM. Update on estimation of kidney function in diabetic kidney disease. Curr Diab Rep. 2015;15(9):57.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang SH, Eliasziw M, Spence JD, Filler G, Vezina WC, Churchill DN, et al. The (99m)Tc-DTPA urinary clearance method may be preferable to the plasma disappearance method for assessing glomerular filtration rate in diabetic nephropathy. Nephron Clin Pract. 2014;128(3–4):367–72.

    CAS  PubMed  Google Scholar 

  47. Israelit AH, Long DL, White MG, Hull AR. Measurement of glomerular filtration rate utilizing a single subcutaneous injection of 125I-iothalamate. Kidney Int. 1973;4(5):346–9.

    Article  CAS  PubMed  Google Scholar 

  48. Brochner-Mortensen J, Jodal L. Reassessment of a classical single injection 51Cr-EDTA clearance method for determination of renal function in children and adults. Part II: empirically determined relationships between total and one-pool clearance. Scand J Clin Lab Invest. 2009;69(3):314–22.

    Article  PubMed  Google Scholar 

  49. Soveri I, Berg UB, Bjork J, Elinder CG, Grubb A, Mejare I, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64(3):411–24.

    Article  PubMed  Google Scholar 

  50. Rizk DV, Meier D, Sandoval RM, Chacana T, Reilly ES, Seegmiller JC, et al. A novel method for rapid bedside measurement of GFR. J Am Soc Nephrol. 2018;29(6):1609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Solomon R, Goldstein S. Real-time measurement of glomerular filtration rate. Curr Opin Crit Care. 2017;23(6):470–4.

    Article  PubMed  Google Scholar 

  52. Dorshow RB, Bugaj JE. Next tier in vitro and in vivo nonclinical studies further elucidating the safety and toxicity profile of MB-102, a novel fluorescent tracer agent for measurement of glomerular filtration rate. Regul Toxicol Pharmacol. 2019;107:104417.

    Article  CAS  PubMed  Google Scholar 

  53. Martin C, Dolmazon E, Moylan K, Fowley C, McHale AP, Callan JF, et al. A charge neutral, size tuneable polymersome capable of high biological encapsulation efficiency and cell permeation. Int J Pharm. 2015;481(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  54. Filler G, Rodriguez Cuellar C, Medeiros M. Overcoming the limitations of glomerular filtration rate estimation by using a novel rapid bedside measurement? Ann Transl Med. 2018;6(15):312.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol. 2007;22(11):1839–48.

    Article  PubMed  Google Scholar 

  56. Chevreuk ME. Sur la composition chimique du bouillon de viands. J Pharm Sci Access. 1835;21:231–42.

    Google Scholar 

  57. Liebig J. Kreatin und Kreatinin, Bestandtheile des Harns der Menschen. J Prakt Chem. 1847;40:288–92.

    Article  Google Scholar 

  58. Jaffe M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Hoppe Seylers Z Physiol Chem. 1886;10(5):391–400.

    Google Scholar 

  59. Folin O. Beitrag zur Chemie des Kreatinins und Kreatins in Harne. Z Physiol Chem. 1904:xli.

    Google Scholar 

  60. Folin O. On the determination of creatinine and creatine in blood, milk and tissues. J Biol Chem. 1914:xvii.

    Google Scholar 

  61. Popper H, Mandel E, Meyer H. Zur Kreatininbestimmung im Blute. Biochem Ztschr. 1937;291

    Google Scholar 

  62. Miller BF, Dubos R. Studies on the presence of creatinine in human blood. J Biol Chem. 1937;121

    Google Scholar 

  63. Dubos R, Miller BF. The production of bacterial enzymes capable of decomposing creatinine. J Biol Chem. 1937;121

    Google Scholar 

  64. Jolliffe N, Smith HW. The excretion of urine in the dog. Am J Physiol. 1931;99:101–7.

    Article  CAS  Google Scholar 

  65. Rehberg PB. Studies on kidney function: the rate of filtration and reabsorption in the human kidney. Biochem J. 1926;20(3):447–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shannon JA. The renal excretion of creatinine in man. J Clin Invest. 1935;14(4):403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller BF, Winkler AW. The renal excretion of endogenous creatinine in man. Comparison with exogenous creatinine and inulin. J Clin Invest. 1938;17(1):31–40.

    Google Scholar 

  68. Miller BF, Leaf A, Mamby AR, Miller Z. Validity of the endogenous creatinine clearance as a measure of glomerular filtration rate in the diseased human kidney. J Clin Invest. 1952;31(3):309–13.

    Google Scholar 

  69. Dodge WF, Travis LB, Daeschner CW. Comparison of endogenous creatinine clearance with inulin clearance. Am J Dis Child. 1967;113(6):683–92.

    Google Scholar 

  70. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28(5):830–8.

    Article  CAS  PubMed  Google Scholar 

  71. Seikaly MG, Browne R, Bajaj G, Arant BS Jr. Limitations to body length/serum creatinine ratio as an estimate of glomerular filtration in children. Pediatr Nephrol. 1996;10(6):709–11.

    Article  CAS  PubMed  Google Scholar 

  72. Herrera J, Rodriguez-Iturbe B. Stimulation of tubular secretion of creatinine in health and in conditions associated with reduced nephron mass. Evidence for a tubular functional reserve. Nephrol Dial Transplant. 1998;13(3):623–9.

    Article  CAS  PubMed  Google Scholar 

  73. Berglund F. Urinary excretion patterns for substances with simultaneous secretion and reabsorption by active transport. Acta Physiol Scand. 1961;52:276–90.

    Article  CAS  PubMed  Google Scholar 

  74. Olsen NV, Ladefoged SD, Feldt-Rasmussen B, Fogh-Andersen N, Jordening H, Munck O. The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients. Scand J Clin Lab Invest. 1989;49(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  75. Roubenoff R, Drew H, Moyer M, Petri M, Whiting-O’Keefe Q, Hellmann DB. Oral cimetidine improves the accuracy and precision of creatinine clearance in lupus nephritis. Ann Intern Med. 1990;113(7):501–6.

    Article  CAS  PubMed  Google Scholar 

  76. Hellerstein S, Erwin P, Warady BA. The cimetidine protocol: a convenient, accurate, and inexpensive way to measure glomerular filtration rate. Pediatr Nephrol. 2003;18(1):71–2.

    Article  PubMed  Google Scholar 

  77. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr. 1983;37(3):478–94.

    Article  CAS  PubMed  Google Scholar 

  78. Schwartz GJ, Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985;106(3):522–6.

    Article  CAS  PubMed  Google Scholar 

  79. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Google Scholar 

  80. Hoogwerf BJ, Laine DC, Greene E. Urine C-peptide and creatinine (Jaffe method) excretion in healthy young adults on varied diets: sustained effects of varied carbohydrate, protein, and meat content. Am J Clin Nutr. 1986;43(3):350–60.

    Google Scholar 

  81. Mitch WE, Collier VU, Walser M. Creatinine metabolism in chronic renal failure. Clin Sci (Lond). 1980;58(4):327–35.

    Google Scholar 

  82. Narayanan S, Appleton HD. Creatinine: a review. Clin Chem. 1980;26(8):1119–26.

    Article  CAS  PubMed  Google Scholar 

  83. Shafi T, Levey AS. Measurement and estimation of residual kidney function in patients on Dialysis. Adv Chronic Kidney Dis. 2018;25(1):93–104.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Horio M, Orita Y. Comparison of Jaffe rate assay and enzymatic method for the measurement of creatinine clearance. Nihon **zo Gakkai Shi. 1996;38(7):296–9.

    CAS  PubMed  Google Scholar 

  85. Arant BS Jr. Estimating glomerular filtration rate in infants. J Pediatr. 1984;104(6):890–3.

    Article  PubMed  Google Scholar 

  86. Proficiency Testing Survey, Creatinine. Northfield: College of American Pathologists. 1995:29–30.

    Google Scholar 

  87. Ceriotti F, Boyd JC, Klein G, Henny J, Queralto J, Kairisto V, et al. Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem. 2008;54(3):559–66.

    Article  CAS  PubMed  Google Scholar 

  88. Delanaye P, Cavalier E, Cristol JP, Delanghe JR. Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J Nephrol. 2014;27(5):467–75.

    Article  CAS  PubMed  Google Scholar 

  89. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38(10):1933–53.

    Article  CAS  PubMed  Google Scholar 

  90. Hoste L, Deiteren K, Pottel H, Callewaert N, Martens F. Routine serum creatinine measurements: how well do we perform? BMC Nephrol. 2015;16:21.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hellerstein S, Simon SD, Berenbom M, Erwin P, Nickell E. Creatinine excretion rates for renal clearance studies. Pediatr Nephrol. 2001;16(8):637–43.

    Article  CAS  PubMed  Google Scholar 

  92. Jung K. Low-molecular-mass proteins in serum and their relationship to the glomerular filtration rate. Nephron. 1987;47(2):160.

    Article  CAS  PubMed  Google Scholar 

  93. Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, et al. Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem. 2002;48(5):729–36.

    Article  CAS  PubMed  Google Scholar 

  94. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  95. Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children--a meta-analysis. Clin Biochem. 2007;40(5–6):383–91.

    Article  CAS  PubMed  Google Scholar 

  96. Graninger W, Pirich KR, Speiser W, Deutsch E, Waldhausl WK. Effect of thyroid hormones on plasma protein concentrations in man. J Clin Endocrinol Metab. 1986;63(2):407–11.

    Article  CAS  PubMed  Google Scholar 

  97. Deng D, Yao K, Chu W, Li T, Huang R, Yin Y, et al. Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J Nutr Biochem. 2009;20(7):544–52.

    Article  CAS  PubMed  Google Scholar 

  98. Witzel SH, Butts K, Filler G. Elevated triglycerides may affect cystatin C recovery. Clin Biochem. 2014;47(7–8):676–8.

    Article  CAS  PubMed  Google Scholar 

  99. Revillard JP, Vincent C, Clot J, Sany J. beta 2-Microglobulin and beta 2-microglobulin-binding proteins in inflammatory diseases. Eur J Rheumatol Inflamm. 1982;5(4):398–405.

    CAS  PubMed  Google Scholar 

  100. Spaggiari E, Faure G, Dreux S, Czerkiewicz I, Stirnemann JJ, Guimiot F, et al. Sequential fetal serum beta2-microglobulin to predict postnatal renal function in bilateral or low urinary tract obstruction. Ultrasound Obstet Gynecol. 2017;49(5):617–22.

    Article  CAS  PubMed  Google Scholar 

  101. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A. Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem. 2005;38(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  102. Andersen TB, Eskild-Jensen A, Frokiaer J, Brochner-Mortensen J. Measuring glomerular filtration rate in children; can cystatin C replace established methods? A Rev Pediatr Nephrol. 2009;24(5):929–41.

    Article  Google Scholar 

  103. Bokenkamp A, Herget-Rosenthal S, Bokenkamp R. Cystatin C, kidney function and cardiovascular disease. Pediatr Nephrol. 2006;21(9):1223–30.

    Article  PubMed  Google Scholar 

  104. Grubb AO. Cystatin C--properties and use as diagnostic marker. Adv Clin Chem. 2000;35:63–99.

    Article  CAS  PubMed  Google Scholar 

  105. Jungers P, Skhiri H, Zingraff J, Muller S, Fumeron C, Giatras I, et al. Benefits of early nephrological management in chronic renal failure. Presse Med. 1997;26(28):1325–9.

    CAS  PubMed  Google Scholar 

  106. Holden RM, Beseau D, Booth SL, Adams MA, Garland JS, Morton RA, et al. FGF-23 is associated with cardiac troponin T and mortality in hemodialysis patients. Hemodialysis Int. 2011;16(1):53–8.

    Google Scholar 

  107. Foster J, Reisman W, Lepage N, Filler G. Influence of commonly used drugs on the accuracy of cystatin C-derived glomerular filtration rate. Pediatr Nephrol. 2006;21(2):235–8.

    Article  PubMed  Google Scholar 

  108. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75(6):652–60.

    Article  CAS  PubMed  Google Scholar 

  109. Al-Malki N, Heidenheim PA, Filler G, Yasin A, Lindsay RM. Cystatin C levels in functionally anephric patients undergoing dialysis: the effect of different methods and intensities. Clin J Am Soc Nephrol. 2009;4(10):1606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang SH, Filler G, Yasin A, Lindsay RM. Cystatin C reduction ratio depends on normalized blood liters processed and fluid removal during hemodialysis. Clin J Am Soc Nephrol. 2011;6(2):319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Galteau MM, Guyon M, Gueguen R, Siest G. Determination of serum cystatin C: biological variation and reference values. Clin Chem Lab Med: CCLM/FESCC. 2001;39(9):850–7.

    Article  CAS  Google Scholar 

  112. Fischbach M, Graff V, Terzic J, Bergere V, Oudet M, Hamel G. Impact of age on reference values for serum concentration of cystatin C in children. Pediatr Nephrol. 2002;17(2):104–6.

    Article  CAS  PubMed  Google Scholar 

  113. Filler GM. The challenges of assessing acute kidney injury in infants. Kidney Int. 2011;80(6):567–8.

    Article  PubMed  Google Scholar 

  114. Bariciak E, Yasin A, Harrold J, Walker M, Lepage N, Filler G. Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem. 2011;44(13):1156–9.

    Article  CAS  PubMed  Google Scholar 

  115. Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol. 2003;18(10):981–5.

    Article  PubMed  Google Scholar 

  116. Hannemann A, Friedrich N, Dittmann K, Spielhagen C, Wallaschofski H, Lzke HV, et al. Age- and sex-specific reference limits for creatinine, cystatin C and the estimated glomerular filtration rate. Clin Chem Lab Med: CCLM/FESCC. 2011;50(5):919–26.

    Google Scholar 

  117. Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J. Cystatin C--a new marker of glomerular filtration rate in children independent of age and height. Pediatrics. 1998;101(5):875–81.

    Article  CAS  PubMed  Google Scholar 

  118. Filler G, Priem F, Vollmer I, Gellermann J, Jung K. Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol. 1999;13(6):501–5.

    Article  CAS  PubMed  Google Scholar 

  119. Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M. Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol. 1999;13(6):506–9.

    Article  CAS  PubMed  Google Scholar 

  120. Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Brodehl J. Reference values for cystatin C serum concentrations in children. Pediatr Nephrol. 1998;12(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  121. Vinge E, Lindergard B, Nilsson-Ehle P, Grubb A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest. 1999;59(8):587–92.

    Article  CAS  PubMed  Google Scholar 

  122. Sharma AP, Kathiravelu A, Nadarajah R, Yasin A, Filler G. Body mass does not have a clinically relevant effect on cystatin C eGFR in children. Nephrol Dial Transplant. 2009;24(2):470–4.

    Article  CAS  PubMed  Google Scholar 

  123. Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem. 1994;40(10):1921–6.

    Article  CAS  PubMed  Google Scholar 

  124. Li J, Dunn W, Breaud A, Elliott D, Sokoll LJ, Clarke W. Analytical performance of 4 automated assays for measurement of cystatin C. Clin Chem. 2010;56(8):1336–9.

    Article  CAS  PubMed  Google Scholar 

  125. Filler G, Huang SH, Yasin A. The usefulness of cystatin C and related formulae in pediatrics. Clin Chem Lab Med: CCLM/FESCC. 2012;50(12):2081–91.

    Article  CAS  Google Scholar 

  126. Bariciak E, Abeeryasin, Harrold J, Walker M, Lepage N, Filler G. Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem. 201144(13):1156–1159.

    Google Scholar 

  127. Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T. Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol. 2000;15(1–2):105–8.

    Article  CAS  PubMed  Google Scholar 

  128. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med: CCLM/FESCC. 2010;48(11):1619–21.

    Article  CAS  Google Scholar 

  130. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ismail OZ, Bhayana V, Kadour M, Lepage N, Gowrishankar M, Filler G. Improving the translation of novel biomarkers to clinical practice: the story of cystatin C implementation in Canada: a professional practice column. Clin Biochem. 2017;50(7–8):380–4.

    Article  CAS  PubMed  Google Scholar 

  132. Cho SY, Lee HJ, Suh JT, Cho BS, Suh JS. Cystatin C/creatinine ratio in pediatric kidney disease. Clin Exp Nephrol. 2011;15(6):976–7.

    Article  CAS  PubMed  Google Scholar 

  133. Park SJ, Shin JI. Validity of cystatin C/creatinine ratio in pediatric kidney disease. Clin Exp Nephrol. 2012;16(5):814–5.

    Article  PubMed  Google Scholar 

  134. Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JA. Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol. 2014;9(5):978–86.

    Article  PubMed  Google Scholar 

  135. Liu C, Wen J, **ang J, Ouyang X, Yang Y, Lu W, et al. Age- and sex-specific reference intervals for the serum cystatin C/creatinine ratio in healthy children (0-18 years old). J Int Med Res. 2019;47(7):3151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Leion F, Hegbrant J, den Bakker E, Jonsson M, Abrahamson M, Nyman U, et al. Estimating glomerular filtration rate (GFR) in children. The average between a cystatin C- and a creatinine-based equation improves estimation of GFR in both children and adults and enables diagnosing shrunken pore syndrome. Scand J Clin Lab Invest. 2017;77(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  137. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol: CJASN. 2011;6(2):274–80.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Benlamri A, Nadarajah R, Yasin A, Lepage N, Sharma AP, Filler G. Development of a beta-trace protein based formula for estimation of glomerular filtration rate. Pediatr Nephrol. 2010;25(3):485–90.

    Article  PubMed  Google Scholar 

  139. White CA, Akbari A, Doucette S, Fergusson D, Hussain N, Dinh L, et al. Estimating GFR using serum beta trace protein: accuracy and validation in kidney transplant and pediatric populations. Kidney Int. 2009;76(7):784–91.

    Article  CAS  PubMed  Google Scholar 

  140. Hochwald GM, Pepe AJ, Thorbecke GJ. Trace proteins in biological fluids. IV. Physicochemical properties and sites of formation of gamma-trace and beta-trace proteins. Proc Soc Exp Biol Med. 1967;124(3):961–6.

    Article  CAS  PubMed  Google Scholar 

  141. Filler G, Kusserow C, Lopes L, Kobrzynski M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem. 2014;47(13–14):1188–94.

    Article  CAS  PubMed  Google Scholar 

  142. Witzel SH, Huang SH, Braam B, Filler G. Estimation of GFR using beta-trace protein in children. Clin J Am Soc Nephrol. 2015;10(3):401–9.

    Article  CAS  PubMed  Google Scholar 

  143. White CA, Akbari A, Doucette S, Fergusson D, Hussain N, Dinh L, et al. A novel equation to estimate glomerular filtration rate using beta-trace protein. Clin Chem. 2007;53(11):1965–8.

    Article  CAS  PubMed  Google Scholar 

  144. Hoffmann A, Nimtz M, Conradt HS. Molecular characterization of beta-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology. 1997;7(4):499–506.

    Article  CAS  PubMed  Google Scholar 

  145. Priem F, Althaus H, Birnbaum M, Sinha P, Conradt HS, Jung K. Beta-trace protein in serum: a new marker of glomerular filtration rate in the creatinine-blind range. Clin Chem. 1999;45(4):567–8.

    Article  CAS  PubMed  Google Scholar 

  146. Chen HH. beta-trace protein versus cystatin C: which is a better surrogate marker of renal function versus prognostic indicator in cardiovascular diseases? J Am Coll Cardiol. 2011;57(7):859–60.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Donadio C, Lucchesi A, Ardini M, Donadio E, Giordani R. Serum levels of beta-trace protein and glomerular filtration rate--preliminary results. J Pharm Biomed Anal. 2003;32(4–5):1099–104.

    Article  CAS  PubMed  Google Scholar 

  148. Bokenkamp A, Franke I, Schlieber M, Duker G, Schmitt J, Buderus S, et al. Beta-trace protein--a marker of kidney function in children: “original research communication-clinical investigation”. Clin Biochem. 2007;40(13–14):969–75.

    Article  PubMed  Google Scholar 

  149. Harrington MG, Aebersold R, Martin BM, Merril CR, Hood L. Identification of a brain-specific human cerebrospinal fluid glycoprotein, beta-trace protein. Appl Theor Electrophor: Off J Int Electrophor Soc. 1993;3(5):229–34.

    CAS  Google Scholar 

  150. Hiraoka A, Seiki K, Oda H, Eguchi N, Urade Y, Tominaga I, et al. Charge microheterogeneity of the beta-trace proteins (lipocalin-type prostaglandin D synthase) in the cerebrospinal fluid of patients with neurological disorders analyzed by capillary isoelectrofocusing. Electrophoresis. 2001;22(16):3433–7.

    Article  CAS  PubMed  Google Scholar 

  151. Akbari A, Lepage N, Keely E, Clark HD, Jaffey J, MacKinnon M, et al. Cystatin-C and beta trace protein as markers of renal function in pregnancy. BJOG. 2005;112(5):575–8.

    Article  PubMed  Google Scholar 

  152. Filler G, Grimmer J, Huang SH, Bariciak E. Cystatin C for the assessment of GFR in neonates with congenital renal anomalies. Nephrol Dial Transplant. 2012;27(9):3382–4.

    Article  CAS  PubMed  Google Scholar 

  153. Zwiers AJ, Cransberg K, de Rijke YB, Willemsen SP, de Mol AC, Tibboel D, et al. Reference ranges for serum beta-trace protein in neonates and children younger than 1 year of age. Clin Chem Lab Med: CCLM/FESCC. 2014;52(12):1815–21.

    Article  CAS  Google Scholar 

  154. LA, Tighiouart H, Coresh J, Foster MC, Anderson AH, Beck GJ, et al. GFR estimation using beta-trace protein and beta2-microglobulin in CKD. Am J Kidney Dis. 2016;67(1):40–8.

    Google Scholar 

  155. Filler G, Alvarez-Elias AC, Westreich KD, Huang SS, Lindsay RM. Can the new CKD-EPI BTP-B2M formula be applied in children? Pediatr Nephrol. 2016;31(12):2175–7.

    Article  PubMed  Google Scholar 

  156. Berggard I, Bearn AG. Isolation and properties of a low molecular weight beta-2-globulin occurring in human biological fluids. J Biol Chem. 1968;243(15):4095–103.

    Article  CAS  PubMed  Google Scholar 

  157. Cresswell P, Springer T, Strominger JL, Turner MJ, Grey HM, Kubo RT. Immunological identity of the small subunit of HL-A antigens and beta2-microglobulin and its turnover on the cell membrane. Proc Natl Acad Sci U S A. 1974;71(5):2123–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bernier GM, Cohen RJ, Conrad ME. Microglobulinaemia in renal failure. Nature. 1968;218(5141):598–9.

    Article  CAS  PubMed  Google Scholar 

  159. Bernier GM, Conrad ME. Catabolsm of human beta-2-microglobulin by the rat kidney. Am J Phys. 1969;217(5):1359–62.

    Article  CAS  Google Scholar 

  160. Viberti GC, Keen H, Mackintosh D. Beta 2-microglobulinaemia: a sensitive index of diminishing renal function in diabetics. Br Med J (Clin Res Ed). 1981;282(6258):95–8.

    Article  CAS  Google Scholar 

  161. Jung K, Schulze BD, Sydow K, Pergande M, Precht K, Schreiber G. Diagnostic value of low-molecular mass proteins in serum for the detection of reduced glomerular filtration rate. J Clin Chem Clin Biochem. 1987;25(8):499–503.

    CAS  PubMed  Google Scholar 

  162. Trnka P, Hiatt MJ, Tarantal AF, Matsell DG. Congenital urinary tract obstruction: defining markers of developmental kidney injury. Pediatr Res. 2012;

    Google Scholar 

  163. Bernard AM, Vyskocil A, Lauwerys RR. Determination of beta 2-microglobulin in human urine and serum by latex immunoassay. Clin Chem. 1981;27(6):832–7.

    Article  CAS  PubMed  Google Scholar 

  164. Matrai Z, Nemeth J, Miklos K, Szabo Z, Masszi T. Serum beta2-microglobulin measured by immunonephelometry: expression patterns and reference intervals in healthy adults. Clin Chem Lab Med: CCLM/FESCC. 2009;47(5):585–9.

    Article  CAS  Google Scholar 

  165. Zerbini CA, Anderson JJ, Kane KA, Ju ST, Campistol JM, Simms RW, et al. Beta 2 microglobulin serum levels and prediction of survival in AL amyloidosis. Amyloid. 2002;9(4):242–6.

    Article  PubMed  Google Scholar 

  166. Auclair G, Zegers I, Munoz-Pineiro MA, Tregoat V, Trapmann S, Merlini G, et al. The certification of mass concentration of Beta-2-microglobulin in human serum. ERM-DA470k/IFCC. Luxembourg: Publications Office; 2015.

    Google Scholar 

  167. Teasdale C, Mander AM, Fifield R, Keyser JW, Newcombe RG, Hughes LE. Serum beta2-microglobulin in controls and cancer patients. Clin Chim Acta. 1977;78(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  168. Beorchia S, Vincent C, Revillard JP, Trepo C. Elevation of serum beta 2 microglobulin in liver diseases. Clin Chim Acta. 1981;109(3):245–55.

    Article  CAS  PubMed  Google Scholar 

  169. Cooper EH, Forbes MA, Hambling MH. Serum beta 2-microglobulin and C reactive protein concentrations in viral infections. J Clin Pathol. 1984;37(10):1140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Walters MT, Stevenson FK, Goswami R, Smith JL, Cawley MI. Comparison of serum and synovial fluid concentrations of beta 2-microglobulin and C reactive protein in relation to clinical disease activity and synovial inflammation in rheumatoid arthritis. Ann Rheum Dis. 1989;48(11):905–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu X, Foster MC, Tighiouart H, Anderson AH, Beck GJ, Contreras G, et al. Non-GFR determinants of low-molecular-weight serum protein filtration markers in CKD. Am J Kidney Dis. 2016;68(6):892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bokenkamp A, Laarman CA, Braam KI, van Wijk JA, Kors WA, Kool M, et al. Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clin Chem. 2007;53(12):2219–21.

    Article  PubMed  Google Scholar 

  173. Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, et al. Rediscovering Beta-2 microglobulin as a biomarker across the Spectrum of kidney diseases. Front Med (Lausanne). 2017;4:73.

    Article  PubMed Central  Google Scholar 

  174. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med. 1999;130(6):461–70.

    Article  CAS  PubMed  Google Scholar 

  175. Lewis J, Agodoa L, Cheek D, Greene T, Middleton J, O’Connor D, et al. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis. 2001;38(4):744–53.

    Article  CAS  PubMed  Google Scholar 

  176. Anderson AH, Yang W, Hsu CY, Joffe MM, Leonard MB, **e D, et al. Estimating GFR among participants in the Chronic Renal Insufficiency Cohort (CRIC) study. Am J Kidney Dis. 2012;60(2):250–61.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Dommergues M, Muller F, Ngo S, Hohlfeld P, Oury JF, Bidat L, et al. Fetal serum beta2-microglobulin predicts postnatal renal function in bilateral uropathies. Kidney Int. 2000;58(1):312–6.

    Article  CAS  PubMed  Google Scholar 

  178. Miller BF, Winkler A. The Ferrocyanide clearance in man. J Clin Invest. 1936;15(5):489–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang Q, Ford LA, Evans AM, Toal DR. Structure elucidation of metabolite x17299 by interpretation of mass spectrometric data. Metabolomics. 2017;13(8):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Velenosi TJ, Thomson BKA, Tonial NC, RaoPeters AAE, Mio MA, Lajoie GA, et al. Untargeted metabolomics reveals N, N, N-trimethyl-L-alanyl-L-proline betaine (TMAP) as a novel biomarker of kidney function. Sci Rep. 2019;9(1):6831.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.

    Article  CAS  PubMed  Google Scholar 

  182. Sharma AP, Yasin A, Garg AX, Filler G. Diagnostic accuracy of cystatin C-based eGFR equations at different GFR levels in children. Clin J Am Soc Nephrol. 2011;6(7):1599–608.

    Article  CAS  PubMed  Google Scholar 

  183. Webster-Clark M, Jaeger B, Zhong Y, Filler G, Alvarez-Elias A, Franceschini N, et al. Low agreement between modified-Schwartz and CKD-EPI eGFR in young adults: a retrospective longitudinal cohort study. BMC Nephrol. 2018;19(1):194.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Selistre L, Rabilloud M, Cochat P, de Souza V, Iwaz J, Lemoine S, et al. Comparison of the Schwartz and CKD-EPI equations for estimating glomerular filtration rate in children, adolescents, and adults: a retrospective cross-sectional study. PLoS Med. 2016;13(3):e1001979.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Grubb A, Nyman U, Bjork J, Lindstrom V, Rippe B, Sterner G, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem. 2005;51(8):1420–31.

    Article  CAS  PubMed  Google Scholar 

  186. Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48(2):221–30.

    Article  CAS  PubMed  Google Scholar 

  187. Grubb A, Horio M, Hansson LO, Bjork J, Nyman U, Flodin M, et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem. 2014;60(7):974–86.

    Article  CAS  PubMed  Google Scholar 

  188. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016;31(5):798–806.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bouvet Y, Bouissou F, Coulais Y, Seronie-Vivien S, Tafani M, Decramer S, et al. GFR is better estimated by considering both serum cystatin C and creatinine levels. Pediatr Nephrol. 2006;21(9):1299–306.

    Article  PubMed  Google Scholar 

  190. Gualano B, Ferreira DC, Sapienza MT, Seguro AC, Lancha AH Jr. Effect of short-term high-dose creatine supplementation on measured GFR in a young man with a single kidney. Am J Kidney Dis. 2010;55(3):e7–9.

    Article  CAS  PubMed  Google Scholar 

  191. Wallace A, Price A, Fleischer E, Khoury M, Filler G. Estimation of GFR in patients with cystic fibrosis: a cross-sectional study. Can J Kidney Health Dis. 2020;7:2054358119899312.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest; A J Tech Methods Pathol. 1991;64(6):777–84.

    CAS  Google Scholar 

  193. Restrepo JM, Torres-Canchala L, Viafara LM, Agredo MA, Quintero AM, Filler G. Renal length z-score for the detection of dysfunction in children with solitary functioning kidney. Acta Paediatr. 2020;

    Google Scholar 

  194. Filler G, Lopes L, Harrold J, Bariciak E. beta-trace protein may be a more suitable marker of neonatal renal function. Clin Nephrol. 2014;81(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  195. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, et al. Design and methods of the Chronic Kidney Disease in children (CKiD) prospective cohort study. Clin J Am Soc Nephrol. 2006;1(5):1006–15.

    Article  PubMed  Google Scholar 

  197. Filler G, Foster J, Acker A, Lepage N, Akbari A, Ehrich JH. The Cockcroft-Gault formula should not be used in children. Kidney Int. 2005;67(6):2321–4.

    Article  PubMed  Google Scholar 

  198. Bjork J, Nyman U, Courbebaisse M, Couzi L, Dalton RN, Dubourg L, et al. Prospects for improved glomerular filtration rate estimation based on creatinine-results from a transnational multicentre study. Clin Kidney J. 2020;13(4):674–83.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Martin MD, Woods JS, Leroux BG, Rue T, Derouen TA, Leitao J, et al. Longitudinal urinary creatinine excretion values among preadolescents and adolescents. Transl Res. 2008;151(1):51–6.

    Article  PubMed  Google Scholar 

  201. Teo BW, Zhang L, Guh JY, Tang SCW, Jha V, Kang DH, et al. Glomerular filtration rates in Asians. Adv Chronic Kidney Dis. 2018;25(1):41–8.

    Article  PubMed  Google Scholar 

  202. Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Nagai T, et al. Is the new Schwartz equation derived from serum creatinine and body length suitable for evaluation of renal function in Japanese children? Eur J Pediatr. 2012;171(9):1401–4.

    Article  PubMed  Google Scholar 

  203. Chiu M. Ethnic differences in mental health and race-based data collection. Healthc Q. 2017;20(3):6–9.

    Article  PubMed  Google Scholar 

  204. Pottel H, Hoste L, Martens F. New insights in glomerular filtration rate formulas and chronic kidney disease classification. Clin Chim Acta. 2010;411(17–18):1341–7.

    Article  CAS  PubMed  Google Scholar 

  205. Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda). 2015;30(1):30–9.

    CAS  PubMed Central  Google Scholar 

  206. Brion LP, Boeck MA, Gauthier B, Nussbaum MP, Schwartz GJ. Estimation of glomerular filtration rate in anorectic adolescents. Pediatr Nephrol. 1989;3(1):16–21.

    Article  CAS  PubMed  Google Scholar 

  207. Groesbeck D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, et al. Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol. 2008;3(6):1777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. DeRouen TA, Leroux BG, Martin MD, Townes BD, Woods JS, Leitao J, et al. Issues in design and analysis of a randomized clinical trial to assess the safety of dental amalgam restorations in children. Control Clin Trials. 2002;23(3):301–20.

    Article  PubMed  Google Scholar 

  209. Furth SL, Pierce C, Hui WF, White CA, Wong CS, Schaefer F, et al. Estimating time to ESRD in children with CKD. Am J Kidney Dis. 2018;71(6):783–92.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ahearn P, Johansen KL, McCulloch CE, Grimes BA, Ku E. Sex disparities in risk of mortality among children with ESRD. Am J Kidney Dis. 2019;73(2):156–62.

    Article  PubMed  Google Scholar 

  211. Beck-Tolly A, Eder M, Beitzke D, Eskandary F, Agibetov A, Lampichler K, et al. Magnetic resonance imaging for evaluation of interstitial fibrosis in kidney allografts. Transplant Direct. 2020;6(8):e577.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr. 2014;164(5):1026–31. e2

    Article  PubMed  Google Scholar 

  213. Li J, Guandalini M, McInnes H, Kandasamy Y, Trnka P, Moritz K. The impact of prematurity on postnatal growth of different renal compartments. Nephrology (Carlton). 2020;25(2):116–24.

    Article  Google Scholar 

  214. Torres-Canchala L, Rengifo M, Filler G, Arias JC, Ramirez O, Restrepo JM. Low agreement between renal volume and renal length z-scores. Pediatr Nephrol. 2020; in press

    Google Scholar 

  215. Filler G, Ramsaroop A, Stein R, Grant C, Marants R, So A, et al. Is Testosterone Detrimental to Renal Function? Kidney Int Rep. 2016;1(4):306–10.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our patients and their parents/caregivers for participating in research projects to help optimize the care of children, adolescents, and young adults with kidney disease. We thank Ms. Ravneet Nagra, BSc, for her thorough review and edits of the final manuscript. We thank our families for the patience that was required to prepare this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Filler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Filler, G., Ferris, M., Gattineni, J. (2022). Assessment of Kidney Function in Children, Adolescents, and Young Adults. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation