Pre-natal Development of the Kidneys and Urinary Tract

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

The mammalian kidney and lower urinary tract maintains and regulates water balance, acid–base homeostasis, electrolyte equilibrium, and waste excretion. The performance of these activities depends on the development of specific cell types in a precise temporal and spatial pattern. Defects in the process can lead to insufficient numbers of nephrons and/or dysfunctional ureters and/or bladders that fail to propel urine forward leading to secondary renal defects. Over the past several decades, considerable advances have been made in understanding the molecular basis for this developmental program. Defects in this program result in congenital anomalies of the kidney and urinary tract (CAKUT), which are leading causes of chronic kidney disease and renal failure in children. These developmental disorders range from renal malformations, such as renal aplasia (absence of the kidney), dysplasia (failure of normal renal differentiation), and hypoplasia (smaller kidneys), to urinary tract abnormalities such as hydronephrosis, vesicoureteral reflux, and duplicated collecting systems. Moreover, many of the molecules identified in animal models as critical for renal development have been validated as important in human CAKUT. This chapter describes renal embryology and molecular control of kidney and urinary tract development, as a means to understand the developmental origins of human CAKUT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Potter EL. Normal and abnormal development of the kidney. Chicago: Year Book Medical Publishers Inc; 1972. p. 305.

    Google Scholar 

  2. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63(6):2113–22.

    Article  PubMed  Google Scholar 

  3. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348(2):101–8.

    Article  PubMed  Google Scholar 

  4. Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF. Reduced nephron number and glomerulomegaly in Australian aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 2006;70(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  5. Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.

    Book  Google Scholar 

  6. Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol. 2012;4(5):a008300.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oxburgh L. Kidney nephron determination. Annu Rev Cell Dev Biol. 2018;34:427–50.

    Article  CAS  PubMed  Google Scholar 

  8. Westland R, Renkema KY, Knoers N. Clinical integration of genome diagnostics for congenital anomalies of the kidney and urinary tract. Clin J Am Soc Nephrol. 2020;16(1):128–137.

    Google Scholar 

  9. Marrone AK, Ho J. MicroRNAs: potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol. 2014;29(4):565–74.

    Article  PubMed  Google Scholar 

  10. Patel SR, Dressler GR. The genetics and epigenetics of kidney development. Semin Nephrol. 2013;33(4):314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54(5):1455–62.

    Article  CAS  PubMed  Google Scholar 

  12. Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A, et al. Effects of maternal vitamin A status on kidney development: a pilot study. Pediatr Nephrol. 2007;22(2):209–14.

    Article  PubMed  Google Scholar 

  13. Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, et al. The GUDMAP database--an online resource for genitourinary research. Development. 2011;138(13):2845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9(1):e1000582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renkema KY, Stokman MF, Giles RH, Knoers NV. Next-generation sequencing for research and diagnostics in kidney disease. Nat Rev Nephrol. 2014;10(8):433–44.

    Article  CAS  PubMed  Google Scholar 

  16. Rak-Raszewska A, Hauser PV, Vainio S. Organ in vitro culture: what have we learned about early kidney development? Stem Cells Int. 2015;2015:959807.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Geuens T, van Blitterswijk CA, LaPointe VLS. Overcoming kidney organoid challenges for regenerative medicine. NPJ Regen Med. 2020;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sims-Lucas S. Analysis of 3D branching pattern: hematoxylin and eosin method. Methods Mol Biol. 2012;886:73–86.

    Article  CAS  PubMed  Google Scholar 

  19. Short KM, Combes AN, Lisnyak V, Lefevre JG, Jones LK, Little MH, et al. Branching morphogenesis in the develo** kidney is not impacted by nephron formation or integration. eLife. 2018;7:e38992.

    Google Scholar 

  20. **e L, Bennett KM, Liu C, Johnson GA, Zhang JL, Lee VS. MRI tools for assessment of microstructure and nephron function of the kidney. Am J Physiol Renal Physiol. 2016;311(6):F1109–F24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tarantal AF, Han VK, Cochrum KC, Mok A, daSilva M, Matsell DG. Fetal rhesus monkey model of obstructive renal dysplasia. Kidney Int. 2001;59(2):446–56.

    Article  CAS  PubMed  Google Scholar 

  22. Yang SP, Woolf AS, Quinn F, Winyard PJ. Deregulation of renal transforming growth factor-beta1 after experimental short-term ureteric obstruction in fetal sheep. Am J Pathol. 2001;159(1):109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Welham SJ, Riley PR, Wade A, Hubank M, Woolf AS. Maternal diet programs embryonic kidney gene expression. Physiol Genomics. 2005;22(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  24. Bouabe H, Okkenhaug K. Gene targeting in mice: a review. Methods Mol Biol. 2013;1064:315–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Igarashi P. Overview: nonmammalian organisms for studies of kidney development and disease. J Am Soc Nephrol. 2005;16(2):296–8.

    Article  PubMed  Google Scholar 

  26. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Short KM, Smyth IM. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol. 2016;12(12):754–67.

    Article  CAS  PubMed  Google Scholar 

  28. Mugford JW, Sipila P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol. 2008;324(1):88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, et al. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the develo** kidney. Dev Biol. 2004;275(1):44–67.

    Article  CAS  PubMed  Google Scholar 

  30. Clark AT, Bertram JF. Molecular regulation of nephron endowment. Am J Phys. 1999;276(4 Pt 2):F485–97.

    CAS  Google Scholar 

  31. Saxen L, Sariola H. Early organogenesis of the kidney. Pediatr Nephrol. 1987;1(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  32. Brodbeck S, Englert C. Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol. 2004;19(3):249–55.

    Article  PubMed  Google Scholar 

  33. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, et al. Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci U S A. 2013;110(12):4640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Combes AN, Davies JA, Little MH. Cell-cell interactions driving kidney morphogenesis. Curr Top Dev Biol. 2015;112:467–508.

    Article  CAS  PubMed  Google Scholar 

  35. Davies JA, Fisher CE. Genes and proteins in renal development. Exp Nephrol. 2002;10(2):102–13.

    Article  CAS  PubMed  Google Scholar 

  36. Lindstrom NO, McMahon JA, Guo J, Tran T, Guo Q, Rutledge E, et al. Conserved and divergent features of human and mouse kidney organogenesis. J Am Soc Nephrol. 2018;29(3):785–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. El-Dahr S, Hilliard S, Aboudehen K, Saifudeen Z. The MDM2-p53 pathway: multiple roles in kidney development. Pediatr Nephrol. 2014;29(4):621–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hilliard SA, Yao X, El-Dahr SS. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies JA, Garrod DR. Induction of early stages of kidney tubule differentiation by lithium ions. Dev Biol. 1995;167(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  40. Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  41. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996;93(16):8455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Brien LL, McMahon AP. Induction and patterning of the metanephric nephron. Semin Cell Dev Biol. 2014;36:31–8.

    Article  PubMed  Google Scholar 

  43. Bard JB. Growth and death in the develo** mammalian kidney: signals, receptors and conversations. BioEssays. 2002;24(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  44. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953;172:869–71.

    Article  CAS  PubMed  Google Scholar 

  45. Barasch J, Qiao J, McWilliams G, Chen D, Oliver JA, Herzlinger D. Ureteric bud cells secrete multiple factors, including bFGF, which rescue renal progenitors from apoptosis. Am J Phys. 1997;273:F757–67.

    CAS  Google Scholar 

  46. Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koseki C, Herzlinger D, Al-Awqati Q. Apoptosis in metanephric development. J Cell Biol. 1992;119(5):1327–33.

    Article  CAS  PubMed  Google Scholar 

  48. Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO. TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development. 2001;128(7):1045–57.

    Article  CAS  PubMed  Google Scholar 

  49. Araki T, Saruta T, Okano H, Miura M. Caspase activity is required for nephrogenesis in the develo** mouse metanephros. Exp Cell Res. 1999;248(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell. 1999;3:1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Coles HSR, Burne JF, Raff MC. Large-scale normal cell death in the develo** rat kidney and its reduction by epidermal growth factor. Development. 1993;117:777–84.

    Article  Google Scholar 

  52. Winyard PJD, Nauta J, Lirenman DS, Hardman P, Sams VR, Risdon RA, et al. Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int. 1996;49:135–46.

    Article  CAS  PubMed  Google Scholar 

  53. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh LFGF. EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development. 2011;138(23):5099–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, et al. Intrinsic age-dependent changes and cell-cell contacts regulate nephron progenitor lifespan. Dev Cell. 2015;35(1):49–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, et al. p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development. 2015;142(7):1228–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cargill K, Hemker SL, Clugston A, Murali A, Mukherjee E, Liu J, et al. Von Hippel-Lindau acts as a metabolic switch controlling nephron progenitor differentiation. J Am Soc Nephrol. 2019;30(7):1192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cargill KR, Sims-Lucas S. Von Hippel-Lindau: implications in development and disease-response. Ann Transl Med. 2020;8(4):142.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, et al. Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem. 2011;286(37):32775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phua YL, Ho J. MicroRNAs in the pathogenesis of cystic kidney disease. Curr Opin Pediatr. 2015;27(2):219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marrone AK, Stolz DB, Bastacky SI, Kostka D, Bodnar AJ, Ho J. MicroRNA-17~92 is required for nephrogenesis and renal function. J Am Soc Nephrol. 2014;25(7):1440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, et al. Secreted frizzled-related proteins can regulate metanephric development. Mech Dev. 2001;102(1–2):45–55.

    Article  CAS  PubMed  Google Scholar 

  62. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  63. Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D. Martin GR. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development. 2005;132(17):3847–57.

    Article  CAS  PubMed  Google Scholar 

  64. Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development. 2005;132(17):3859–71.

    Article  CAS  PubMed  Google Scholar 

  65. Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B. The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol. 2009;335(1):106–19.

    Article  CAS  PubMed  Google Scholar 

  66. Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development. 2000;127(10):2089–98.

    Article  CAS  PubMed  Google Scholar 

  67. Wallingford JB, Carroll TJ, Vize PD. Precocious expression of the Wilms’ tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol. 1998;202(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  68. Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR. Repression of Pax-2 by WT1 during normal kidney development. Development. 1995;121(3):867–75.

    Article  CAS  PubMed  Google Scholar 

  69. Dressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Silliams-Simons L, Westphal H. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature. 1993;362:65–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development. 2005;132(12):2809–23.

    Article  CAS  PubMed  Google Scholar 

  71. Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, et al. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development. 2003;130(19):4751–9.

    Article  CAS  PubMed  Google Scholar 

  72. Mukherjee M, Fogarty E, Janga M, Surendran K. Notch signaling in kidney development, maintenance, and disease. Biomol Ther. 2019;9(11):692.

    CAS  Google Scholar 

  73. Boyle SC, Kim M, Valerius MT, McMahon AP, Kopan R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development. 2011;138(19):4245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tryggvason K, Patrakka J. Thin basement membrane nephropathy. J Am Soc Nephrol. 2006;17(3):813–22.

    Article  CAS  PubMed  Google Scholar 

  75. Fetterman GH, Shuplock NA, Philipp FJ, Gregg HS. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics. 1965;35:601–19.

    Article  CAS  PubMed  Google Scholar 

  76. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22(7):1365–74.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 2007;71(12):1205–14.

    Article  CAS  PubMed  Google Scholar 

  78. Atkinson MA, Ng DK, Warady BA, Furth SL, Flynn JT. The CKiD study: overview and summary of findings related to kidney disease progression. Pediatr Nephrol. 2020;36(3):527–538.

    Google Scholar 

  79. Robertson CC, Gillies CE, Putler RKB, Ng D, Reidy KJ, Crawford B, et al. An investigation of APOL1 risk genotypes and preterm birth in African American population cohorts. Nephrol Dial Transplant. 2017;32(12):2051–8.

    CAS  PubMed  Google Scholar 

  80. Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol. 2020;24(3):193–204.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, et al. The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol. 2004;24(22):9899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Patek CE, Little MH, Fleming S, Miles C, Charlieu JP, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci U S A. 1999;96(6):2931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  84. Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet. 2002;11(6):651–9.

    Article  CAS  PubMed  Google Scholar 

  85. Yang Y, Jeanpierre C, Dressler GR, Lacoste M, Niaudet P, Gubler MC. WT1 and PAX-2 podocyte expression in Denys-Drash syndrome and isolated diffuse mesangial sclerosis. Am J Pathol. 1999;154(1):181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barbaux S, Niaudet P, Gubler M-C, Grünfeld J-P, Jaubert F, Kuttenn F, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet. 1997;17:467–70.

    Article  CAS  PubMed  Google Scholar 

  87. Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1+/-KTS splice isoforms. Hum Mol Genet. 1998;7:709–14.

    Article  CAS  PubMed  Google Scholar 

  88. Coppes MJ, Liefers GJ, Higuchi M, Zinn AB, Balfe JW, Williams BR. Inherited WT1 mutation in Denys-Drash syndrome. Cancer Res. 1992;52(21):6125–8.

    CAS  PubMed  Google Scholar 

  89. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999;126:5771–83.

    Article  CAS  PubMed  Google Scholar 

  90. Sadl V, ** F, Yu J, Cui S, Holmyard D, Quaggin S, et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol. 2002;249(1):16–29.

    Article  CAS  PubMed  Google Scholar 

  91. Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, et al. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest. 2002;109(8):1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dreyer SD, Zhou G, Baldini A, Winterpacht A, Zabel B, Cole W, et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19:47–50.

    Article  CAS  PubMed  Google Scholar 

  93. Lemley KV. Kidney disease in nail-patella syndrome. Pediatr Nephrol. 2009;24(12):2345–54.

    Article  PubMed  Google Scholar 

  94. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19(11):2069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19(11):2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kitamoto Y, Tokunaga H, Tomita K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J Clin Invest. 1997;99(10):2351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tufro A, Norwood VF, Carey RM, Gomez RA. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol. 1999;10(10):2125–34.

    Article  CAS  PubMed  Google Scholar 

  99. Tufro A. Semaphorin3a signaling, podocyte shape, and glomerular disease. Pediatr Nephrol. 2014;29(4):751–5.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Woolf AS, Yuan HT. Angiopoietin growth factors and tie receptor tyrosine kinases in renal vascular development. Pediatr Nephrol. 2001;16(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  101. Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-Rß signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125:3313–22.

    Article  CAS  PubMed  Google Scholar 

  102. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8:1875–87.

    Article  CAS  PubMed  Google Scholar 

  103. Soriano P. Abnormal kidney development and hematological disorders in PDGF ß-receptor mutant mice. Genes Dev. 1994;8:1888–96.

    Article  CAS  PubMed  Google Scholar 

  104. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128:491–502.

    Article  CAS  PubMed  Google Scholar 

  105. Kreidberg JA. Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol. 2003;14(3):806–14.

    Article  PubMed  Google Scholar 

  106. Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271(3 Pt 2):F744–53.

    CAS  PubMed  Google Scholar 

  107. Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accavitti MA, Abrass CK, et al. Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Phys. 1996;270(5 Pt 2):F886–99.

    CAS  Google Scholar 

  108. Ricono JM, Xu YC, Arar M, ** DC, Barnes JL, Abboud HE. Morphological insights into the origin of glomerular endothelial and mesangial cells and their precursors. J Histochem Cytochem. 2003;51(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  109. Sariola H, Ekblom P, Lehtonen E, Saxen L. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol. 1983;96(2):427–35.

    Article  CAS  PubMed  Google Scholar 

  110. Nagata M, Nakayama K, Terada Y, Hoshi S, Watanabe T. Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol. 1998;153(5):1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Garrod DR, Fleming S. Early expression of desmosomal components during kidney tubule morphogenesis in human and murine embryos. Development. 1990;108(2):313–21.

    Article  CAS  PubMed  Google Scholar 

  112. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307.

    Article  CAS  PubMed  Google Scholar 

  113. Miner JH, Sanes JR. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol. 1994;127(3):879–91.

    Article  CAS  PubMed  Google Scholar 

  114. Miner JH, Li C. Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol. 2000;217(2):278–89.

    Article  CAS  PubMed  Google Scholar 

  115. Miner JH, Sanes JR. Molecular and functional defects in kidneys of mice lacking collagen alpha 3(IV): implications for Alport syndrome. J Cell Biol. 1996;135(5):1403–13.

    Article  CAS  PubMed  Google Scholar 

  116. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP. The renal glomerulus of mice lacking s-laminin/laminin ß2: nephrosis despite molecular compensation by laminin ß1. Nat Genet. 1995;10:400–6.

    Article  CAS  PubMed  Google Scholar 

  117. Ekblom P. Formation of basement membranes in embryonic kidney: an immunohistological study. J Cell Biol. 1981;91:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sariola H, Timpl R, von der Mark K, Mayne R, Fitch JM, Linsenmayer TF, et al. Dual origin of glomerular basement membrane. Dev Biol. 1984;101:86–96.

    Article  CAS  PubMed  Google Scholar 

  119. Rowan CJ, Sheybani-Deloui S, Rosenblum ND. Origin and function of the renal stroma in health and disease. Results Probl Cell Differ. 2017;60:205–29.

    Article  CAS  PubMed  Google Scholar 

  120. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged Helix transcription factor BF-2. Genes Dev. 1996;10:1467–78.

    Article  CAS  PubMed  Google Scholar 

  121. Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, et al. FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development. 2014;141(1):17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Das A, Tanigawa S, Karner CM, **n M, Lum L, Chen C, et al. Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol. 2013;15(9):1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One. 2014;9(2):e88400.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gomez RA, Sequeira-Lopez MLS. Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol. 2018;14(4):231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest. 2016;126(5):1926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Stolz DB, Sims-Lucas S. Unwrap** the origins and roles of the renal endothelium. Pediatr Nephrol. 2014;30(6):865–72.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mohamed T, Sequeira-Lopez MLS. Development of the renal vasculature. Semin Cell Dev Biol. 2019;91:132–46.

    Article  PubMed  Google Scholar 

  128. Abrahamson DR, Robert B, Hyink DP, St John PL, Daniel TO. Origins and formation of microvasculature in the develo** kidney. Kidney Int Suppl. 1998;67:S7–11.

    Article  PubMed  Google Scholar 

  129. Robert B, St John PL, Abrahamson DR. Direct visualization of renal vascular morphogenesis in Flk1 heterozygous mutant mice. Am J Phys. 1998;275(1 Pt 2):F164–72.

    CAS  Google Scholar 

  130. Sequeira Lopez ML, Gomez RA. Development of the renal arterioles. J Am Soc Nephrol. 2011;22(12):2156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kume T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol Histopathol. 2010;25(5):637–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, et al. Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One. 2013;8(6):e65993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schrijvers BF, Flyvbjerg A, De Vriese AS. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004;65(6):2003–17.

    Article  CAS  PubMed  Google Scholar 

  134. Simon M, Rockl W, Hornig C, Grone EF, Theis H, Weich HA, et al. Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in fetal and adult human kidney: localization and [125I]VEGF binding sites. J Am Soc Nephrol. 1998;9(6):1032–44.

    Article  CAS  PubMed  Google Scholar 

  135. Freeburg PB, Robert B, St John PL, Abrahamson DR. Podocyte expression of hypoxia-inducible factor (HIF)-1 and HIF-2 during glomerular development. J Am Soc Nephrol. 2003;14(4):927–38.

    Article  CAS  PubMed  Google Scholar 

  136. Woolf AS, Gnudi L, Long DA. Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol. 2009;20(2):239–44.

    Article  CAS  PubMed  Google Scholar 

  137. Tung JJ, Tattersall IW, Kitajewski J. Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harb Perspect Med. 2012;2(2):a006601.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82(2):344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang Y, Houle AM, Letendre J, Richter A. RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat. 2008;29(5):695–702.

    Article  CAS  PubMed  Google Scholar 

  140. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    Article  CAS  PubMed  Google Scholar 

  141. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    Article  CAS  PubMed  Google Scholar 

  142. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997;124:4077–87.

    Article  CAS  PubMed  Google Scholar 

  143. Pepicelli CV, Kispert A, Rowitch D, McMahon AP. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol. 1997;192:193–8.

    Article  CAS  PubMed  Google Scholar 

  144. Srinivas S, Wu Z, Chen C-M, D’Agati V, Costantini F. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development. 1999;126:1375–86.

    Article  CAS  PubMed  Google Scholar 

  145. Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, et al. The role of GDNF in patterning the excretory system. Dev Biol. 2005;283(1):70–84.

    Article  CAS  PubMed  Google Scholar 

  146. Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet. 2007;80(4):616–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev. 2015;82(3):151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Costantini F. GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis. 2010;6(4):252–62.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol. 2008;19(5):891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development. 2003;130(14):3175–85.

    Article  CAS  PubMed  Google Scholar 

  151. Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Phys. 1995;268:F73–81.

    CAS  Google Scholar 

  152. Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2ß. Genes Dev. 1997;11:1938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development. 2004;131(7):1449–62.

    Article  CAS  PubMed  Google Scholar 

  154. Walker KA, Sims-Lucas S, Bates CM. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol. 2016;31(6):885–95.

    Article  PubMed  Google Scholar 

  155. Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development. 2004;131(14):3345–56.

    Article  CAS  PubMed  Google Scholar 

  156. Lefevre JG, Short KM, Lamberton TO, Michos O, Graf D, Smyth IM, et al. Branching morphogenesis in the develo** kidney is governed by rules that pattern the ureteric tree. Development. 2017;144(23):4377–85.

    CAS  PubMed  Google Scholar 

  157. Kondo S. An updated kernel-based Turing model for studying the mechanisms of biological pattern formation. J Theor Biol. 2017;414:120–7.

    Article  PubMed  Google Scholar 

  158. Menshykau D, Michos O, Lang C, Conrad L, McMahon AP, Iber D. Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback. Nat Commun. 2019;10(1):239.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Cebrian C, Borodo K, Charles N, Herzlinger DA. Morphometric index of the develo** murine kidney. Dev Dyn. 2004;231(3):601–8.

    Article  PubMed  Google Scholar 

  160. Li W, Hartwig S, Rosenblum ND. Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn. 2014;243(7):853–63.

    Article  PubMed  Google Scholar 

  161. Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol. 1999;146:255–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol. 2001;231:31–46.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang P, Liégeois NJ, Wong C, Finegold M, Thompson JC, Silverman A, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997;387:151–8.

    Article  CAS  PubMed  Google Scholar 

  164. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development. 2009;136(1):161–71.

    Article  CAS  PubMed  Google Scholar 

  165. Bohnenpoll T, Kispert A. Ureter growth and differentiation. Semin Cell Dev Biol. 2014;36:21–30.

    Article  PubMed  Google Scholar 

  166. Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol. 2020;17(8):459–68.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Liaw A, Cunha GR, Shen J, Cao M, Liu G, Sinclair A, et al. Development of the human bladder and ureterovesical junction. Differentiation. 2018;103:66–73.

    Article  CAS  PubMed  Google Scholar 

  168. Elmore SA, Kavari SL, Hoenerhoff MJ, Mahler B, Scott BE, Yabe K, et al. Histology atlas of the develo** mouse urinary system with emphasis on prenatal days E10.5-E18.5. Toxicol Pathol. 2019;47(7):865–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Houweling AC, Beaman GM, Postma AV, Gainous TB, Lichtenbelt KD, Brancati F, et al. Loss-of-function variants in myocardin cause congenital megabladder in humans and mice. J Clin Invest. 2019;129(12):5374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Price KL, Woolf AS, Long DA. Unraveling the genetic landscape of bladder development in mice. J Urol. 2009;181(5):2366–74.

    Article  CAS  PubMed  Google Scholar 

  171. Mamo TM, Wittern AB, Kleppa MJ, Bohnenpoll T, Weiss AC, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the develo** mouse ureter. Hum Mol Genet. 2017;26(18):3553–63.

    Article  CAS  PubMed  Google Scholar 

  172. Bohnenpoll T, Wittern AB, Mamo TM, Weiss AC, Rudat C, Kleppa MJ, et al. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet. 2017;13(8):e1006951.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, et al. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol. 2005;16(7):2141–9.

    Article  CAS  PubMed  Google Scholar 

  174. Jenkins D, Bitner-Glindzicz M, Malcolm S, Allison J, de Bruyn R, Flanagan S, et al. Mutation analyses of Uroplakin II in children with renal tract malformations. Nephrol Dial Transplant. 2006;21(12):3415–21.

    Article  CAS  PubMed  Google Scholar 

  175. Aydogdu N, Rudat C, Trowe MO, Kaiser M, Ludtke TH, Taketo MM, et al. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development. 2018;145(23):dev171827.

    Article  PubMed  Google Scholar 

  176. Vivante A, Kleppa MJ, Schulz J, Kohl S, Sharma A, Chen J, et al. Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am J Hum Genet. 2015;97(2):291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Weiss AC, Bohnenpoll T, Kurz J, Blank P, Airik R, Ludtke TH, et al. Delayed onset of smooth muscle cell differentiation leads to hydroureter formation in mice with conditional loss of the zinc finger transcription factor gene Gata2 in the ureteric mesenchyme. J Pathol. 2019;248(4):452–63.

    Article  CAS  PubMed  Google Scholar 

  178. Mahoney ZX, Sammut B, Xavier RJ, Cunningham J, Go G, Brim KL, et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci U S A. 2006;103(52):19872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Weiss AC, Kispert A. Eph/ephrin signaling in the kidney and lower urinary tract. Pediatr Nephrol. 2016;31(3):359–71.

    Article  PubMed  Google Scholar 

  180. Baskin L, DiSandro M, Li Y, Li W, Hayward S, Cunha G. Mesenchymal-epithelial interactions in bladder smooth muscle development: effects of the local tissue environment. J Urol. 2001;165(4):1283–8.

    Article  CAS  PubMed  Google Scholar 

  181. Guo C, Balsara ZR, Hill WG, Li X. Stage- and subunit-specific functions of polycomb repressive complex 2 in bladder urothelial formation and regeneration. Development. 2017;144(3):400–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ikeda Y, Zabbarova I, Schaefer CM, Bushnell D, De Groat WC, Kanai A, et al. Fgfr2 is integral for bladder mesenchyme patterning and function. Am J Physiol Renal Physiol. 2017;312(4):F607–F18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hoshi M, Batourina E, Mendelsohn C, Jain S. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development. 2012;139(13):2405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sims-Lucas S. Kidney development: methods and protocols. Methods Mol Biol. 2012;886:81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlton M. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bates, C.M., Ho, J., Sims-Lucas, S., Reidy, K. (2022). Pre-natal Development of the Kidneys and Urinary Tract. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation