Vegetable and Herb Disease Management in Protected Culture

  • Living reference work entry
  • First Online:
Handbook of Vegetable and Herb Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

  • 62 Accesses

Abstract

Protected vegetable production has long been recognized for its efficient implementation of advanced integrated pest management schemes. They were initially mostly focused on the control of arthropod pests, but since 2000 tremendous progress has been achieved in the inclusion of disease control in these management programs. This chapter presents key features of current protected cultivation systems and reviews recent advances in disease management tools. Disease control increasingly relies on vegetable cultivars with reduced susceptibility to pathogens and grafting on resistant rootstock, as well as a wide gamut of prophylactic cultural measures. In addition, a large array of microbial bioprotectants and natural substances have become available and are being used by farmers. Their use, as substitutes for, or in alternation with synthetic chemicals, provides increasingly valuable assistance for farmers to cope with the growing challenges of relying on chemical control. The combination of these tactical tools into advanced integrated disease management strategies is presented as three case studies, to produce leafy vegetables, solanaceous crops, and cucurbits. Outlooks are proposed on progress that may further enhance these advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ab Rahman SFS, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111. https://doi.org/10.1016/j.plantsci.2017.11.012

    Article  CAS  Google Scholar 

  • Abbasi PA, Lazarovits G (2005) Effects of AG3 phosphonate formulations on incidence and severity of Pythium dam**-off of cucumber seedlings under growth room, microplot, and field conditions. Can J Plant Pathol 27:420–429. https://doi.org/10.1080/07060660509507241

    Article  CAS  Google Scholar 

  • Abbasi PA, Lazarovitis G, Weselowski B (2011) Effectiveness of AG3 phosphonate formulation in suppressing phytophthora blight in cucumber and bell pepper plants under growth room conditions. Can J Plant Pathol 33:150–158. https://doi.org/10.1080/07060661.2011.562245

    Article  CAS  Google Scholar 

  • Albajes R, Gullino ML, van Lenteren JC, Elad Y (1999) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publisher, New York

    Book  Google Scholar 

  • Alderman SC, Lacy ML, Everts KL (1985) Influence of interruptions of dew period on numbers of lesions produced on onion by Botrytis squamosa. Phytopathology 75:808–810

    Article  Google Scholar 

  • Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E (2016) Plant resistance inducers against pathogens in Solanaceae species – from molecular mechanisms to field application. Int J Mol Sci 17:1–25

    Article  CAS  Google Scholar 

  • Barakat MEK, Bakeer ART, Mostafa WF (2011) Potential of the integrated control of cucumber root rot using natural, biological and chemical methods. J Life Sci 5:143–156

    Google Scholar 

  • Barriere V, Lecompte F, Lescourret F (2015) Efficacy of pest and pathogen control, yield and quality of winter lettuce crops managed with reduced pesticide applications. Eur J Agron 71:34–43

    Article  Google Scholar 

  • Bates ML, Stanghellini ME (1984) Root rot of hydroponically grown spinach caused by Pythium aphanidermatum and P. dissotocum. Plant Dis 68:989–991

    Article  Google Scholar 

  • Becktell MC, Daughtrey ML, Fry WE (2005) Temperature and leaf wetness requirements for pathogen establishment, incubation period, and sporulation of Phytophthora infestans on Petunia x hybrida. Plant Dis 89:975–979

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bonanomi G, Cesarano G, Antignani V, Di Maio C, De Filippis F, Scala F (2018) Conventional farming impairs Rhizoctonia solani disease suppression by disrupting soil food web. J Phytopathol 166:663–673

    Article  CAS  Google Scholar 

  • Borrego-Benjumea A, Basallote-Ureba MJ, Abbasi PA, Lazarovits G, Melero-Vara JM (2014) Effects of incubation temperature on the organic amendment-mediated control of Fusarium wilt of tomato. Ann Appl Biol 164(3):453–463

    Article  CAS  Google Scholar 

  • Boulard T, Baille A, Lagier J, Mermier M, Vanderschmitt E (1989) Water vapour transfer in a plastic house equipped with a dehumidification heat pump. J Agric Eng Res 44:191–204

    Article  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012) Impact of anaerobic soil disinfestation combined with soil solarization on plant-parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Butler DM, Kokalis-Burelle N, Albano JP, McCollum TG, Muramoto J, Shennan C, Rosskopf EN (2014) Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378:365–381

    Article  CAS  Google Scholar 

  • Cacciola SO, Gullino ML (2019) Emerging and re-emerging fungus and oomycete soil-borne plant diseases in Italy. Phytopathol Mediterr 58(3):451–472

    CAS  Google Scholar 

  • Cámara-Zapata JM, Sánchez-Molina JA, Rodríguez F, López JC (2019) Evaluation of a dehumidifier in a mild weather greenhouse. Appl Therm Eng 146(5):92–103

    Article  Google Scholar 

  • Camp AR, Dillard HR, Smart CD (2008) Efficacy of Muscodor albus for the control of Phytophthora blight of sweet pepper and butternut squash. Plant Dis 92:1488–1492

    Article  CAS  PubMed  Google Scholar 

  • Campen JB (2006) Ventilation of small multispan greenhouse in relation to the window openings calculated with CFD. Acta Hortic 718:351–356

    Article  Google Scholar 

  • Campen JB (2008) Vapour removal from the greenhouse using forced ventilation when applying a thermal screen. Acta Hortic 801:863–868

    Article  Google Scholar 

  • Campen JB, Bot GPA, de Zwart HF (2003) Dehumidification of greenhouses at northern latitudes. Biosyst Eng 86:487–493

    Article  Google Scholar 

  • Cardarelli M, Rouphael Y, Kyriacou MC, Colla G, Pane C (2020) Augmenting the sustainability of vegetable crop** systems by configuring rootstock-dependent rhizomicrobiomes that support plant protection. Agronomy 10(8):1185

    Article  CAS  Google Scholar 

  • Carrai C (1993) Marciume radicale su lattuga allevata in impianti NFT. Colture Protette 22(6):77–81

    Google Scholar 

  • Castilla N (1994) Greenhouses in the Mediterranean area: technological level and strategic management. Acta Hortic 361:44–56

    Article  Google Scholar 

  • Castilla N, Hernandez J (2007) Greenhouse technological packages for high-quality crop production. Acta Hortic 761:285–297

    Article  Google Scholar 

  • Castilla N, Montero JI (2008) Environmental control and crop production in Mediterranean greenhouses. Acta Hortic 797:25–36

    Article  Google Scholar 

  • Chellemi DO, Gamliel A, Katan J, Subbarao KV (2016) Development and deployment of systems-based approaches for the management of soilborne plant pathogens. Phytopathology 106:216–225

    Article  CAS  PubMed  Google Scholar 

  • Chen LP, Jiang K, Zhang Q, Guo WZ, Zheng WG (2020) Design and experiment on scion cutting mechanism of grafting robot for cucurbit. Int J Agric Biol Eng 13(5):99–106

    Google Scholar 

  • Chiocchetti A, Sciaudone L, Durando F, Garibaldi A, Migheli Q (2001) PCR detection of Fusarium oxysporum f. sp. basilici on basil. Plant Dis 85:607–611

    Article  CAS  PubMed  Google Scholar 

  • Clematis F, Minuto A, Gullino ML, Garibaldi A (2009) Suppressiveness to Fusarium oxysporum f. sp. radicis lycopersici in re-used perlite and perlite-peat substrates in soilless tomatoes. Biol Control 48:108–144

    Article  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    Article  CAS  PubMed  Google Scholar 

  • Colla P, Gilardi G, Gullino ML (2012) A review and critical analysis of the European situation of soilborne disease management in the vegetable sector. Phytoparasitica 40:515–523

    Article  Google Scholar 

  • Crino P, Lo Bianco C, Rouphael Y, Colla G, Saccardo F, Paratore A (2007) Evaluation of rootstock resistance to Fusarium wilt and Gummy stem blight and effect on yield and quality of a grafted “Inodorus” melon. HortScience 42:521–525

    Article  Google Scholar 

  • Cucu MA, Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2020) An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biol Control 142:104158

    Article  CAS  Google Scholar 

  • Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee S-G, Huh Y-C, Sun Z, Miguel A, King SR, Cohen R, Lee JM (2008) Cucurbit grafting. Crit Rev Plant Sci 27(1):50–74

    Article  Google Scholar 

  • Donley N (2019) The USA lags behind other agricultural nations in banning harmful pesticides. Environ Health 18(1):44. https://doi.org/10.1186/s12940-019-0488-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckshtain-Levi N, Harris SL, Roscios RQ, Shank EA (2020) Bacterial community members increase Bacillus subtilis maintenance on the roots of Arabidopsis thaliana. Phytobiomes J. https://doi.org/10.1094/pbiomes-02-20-0019-r

  • Elad Y (1997) Effect of filtration of solar light on the production of conidia by field isolates of Botrytis cinerea and on several diseases of greenhouse-grown vegetables. Crop Prot 16:635–642

    Article  Google Scholar 

  • Elad Y, Kirshner B (1993) Survival in the phylloplane of an introduced biocontrol agent (Trichoderma harzianum) and populations of the plant pathogen Botrytis cinerea as modified by abiotic conditions. Phytoparasitica 21:303–313

    Article  Google Scholar 

  • Elmer WH (2012) Cultural practices. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable and ornamental crops. APS Press, St. Paul, pp 67–74

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • FAO and WHO (2017) International code of conduct on pesticide management: guidelines for the registration of microbial, botanical and semiochemical pest control agents for plant protection and public health uses. The Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO), Geneva

    Google Scholar 

  • Fatmi M, Walcott RR, Schaad NW (2017) Detection of plant-pathogenic bacteria in seed and other planting material. APS Press, St. Paul

    Book  Google Scholar 

  • Foster JM, Hausbeck MK (2010) Managing Phytophthora crown and root rot in bell pepper using fungicides and host resistance. Plant Dis 94:697–702

    Article  CAS  PubMed  Google Scholar 

  • Franco Ortega S, Tomlinson J, Gilardi G, Spadaro D, Gullino ML, Garibaldi A, Boonham N (2018) Rapid detection of Fusarium oxysporum f. sp. lactucae on soil, lettuce seeds and plants using loop-mediated isothermal amplification. Plant Pathol 67:1462–1473

    Article  CAS  Google Scholar 

  • Gamliel A (2000) Soil amendments: a non chemical approach to the management of soilborne pests. Acta Hortic 532:39–48

    Article  Google Scholar 

  • Gard B, Clerc H, Goillon C, Parès L, Védie H, Lefèvre A (2018) Projet GEDUBAT: concevoir et expérimenter en réseau des combinaisons de pratiques pour une gestion durable des bioagresseurs du sol. Innov Agron 70:165–180

    Google Scholar 

  • Garibaldi A, Gullino ML (2010) Emerging soilborne diseases of horticultural crops and new trends in their management. Acta Hortic 883:37–47

    Article  Google Scholar 

  • Garibaldi A, Minuto A, Grasso V, Gullino ML (2003) Application of selected antagonistic strains against Phytophthora cryptogea on gerbera in closed soilless systems with disinfection by slow sand filtration. Crop Prot 22:1053–1061

    Article  Google Scholar 

  • Garibaldi A, Baudino M, Minuto A, Gullino ML (2008) Effectiveness of fumigants and grafting against tomato brown root rot caused by Colletotrichum coccodes. Phytoparasitica 36:483–488

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Clematis F, Gullino ML, Lazzeri L, Malaguti L (2010) Effect of green Brassica manure and Brassica defatted seed meals in combination with grafting and soil solarization against Verticillium wilt of eggplant and Fusarium wilt of lettuce and basil. Acta Hortic 883:295–302

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Gullino ML (2011) Effect of potassium silicate and electrical conductivity in reducing powdery mildew of hydroponically grown tomato. Phytopathol Mediterr 50:192–202

    CAS  Google Scholar 

  • Garibaldi A, Gilardi G, Cogliati EE, Gullino ML (2012) Silicon and increased electrical conductivity reduce downy mildew of soilless grown lettuce. Eur J Plant Pathol 132:123–132

    Article  CAS  Google Scholar 

  • Gilardi G, Gullino ML, Garibaldi A (2011) Reaction of tomato rootstocks to selected soil-borne pathogens under artificial inoculation conditions. Acta Hortic 914:345–348

    Article  Google Scholar 

  • Gilardi G, Baudino M, Moizio M, Pugliese M, Garibaldi A, Gullino ML (2013a) Integrated management of Phytophthora capsici on bell pepper by combining grafting and compost treatment. Crop Prot 53:13–19

    Article  Google Scholar 

  • Gilardi G, Gullino ML, Garibaldi A (2013b) Critical aspects of grafting as a possible strategy to manage soil-borne pathogens. Sci Hortic 149:19–21

    Article  Google Scholar 

  • Gilardi G, Colla P, Pugliese M, Baudino M, Gullino ML, Garibaldi A (2014a) Control of Colletotrichum coccodes on tomato by grafting and soil amendments. J Phytopathol 162(2):116–123

    Article  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2014b) Managing Phytophthora crown and root rot on tomato by pre-plant treatments with biocontrol agents, resistance inducers, organic and mineral fertilizers under nursery conditions. Phytopathol Mediterr 53:205–215

    CAS  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2014c) Effect of simulated soil solarization and organic amendments on Fusarium wilt of rocket and basil under controlled conditions. J Phytopathol 162:557–566

    Article  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2014d) Varietal resistance to control Fusarium wilts of leafy vegetables under greenhouse. Commun Agric Appl Biol Sci 79:21–27

    CAS  PubMed  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2015a) Management of leaf spot of wild rocket using fungicides, resistance inducers and a biocontrol agent, under greenhouse conditions. Crop Prot 71:39–44. https://doi.org/10.1016/j.cropro.2015.01.021

    Article  CAS  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2015b) Nursery treatments with non-conventional products against crown and root rot, caused by Phytophthora capsici, on zucchini. Phytoparasitica 43(4):501–508

    Article  CAS  Google Scholar 

  • Gilardi G, Demarchi S, Ramon I, Gullino ML, Garibaldi A (2015c) Pre-planting treatments with phosphite-based products against different foliar and soil-borne pathogens of vegetable crops. Commun Agric Appl Biol Sci 80(3):445–451

    CAS  PubMed  Google Scholar 

  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A (2016a) Evaluation of the short term effect of nursery treatments with phosphite-based products, acibenzolar-S-methyl, pelleted Brassica carinata and biocontrol agents, against lettuce and cultivated rocket Fusarium wilt under artificial inoculation and greenhouse conditions. Crop Prot 85:23–32

    Article  CAS  Google Scholar 

  • Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2016b) Effect of different organic amendments on lettuce Fusarium wilt on selected soilborne microorganisms. Plant Pathol 65:704–712

    Article  Google Scholar 

  • Gilardi G, Gisi U, Garibaldi A, Gullino ML (2017) Effect of elevated atmospheric CO2 and temperature on the chemical and biological control of powdery mildew of zucchini and the Phoma leaf spot of leaf beet. Eur J Plant Pathol 148:229–236

    Article  CAS  Google Scholar 

  • Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2019) Nursery treatments with resistant inducers, soil amendments and biocontrol agents for the management of the Fusarium wilt of lettuce under glasshouse and field conditions. J Phytopathol 167(2):98–110. https://doi.org/10.1111/jph.12778

    Article  CAS  Google Scholar 

  • Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2020a) Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by Phytophthora capsici, on zucchini in a closed soilless system. Sci Hortic 265:109207

    Article  CAS  Google Scholar 

  • Gilardi G, Pugliese M, Gullino ML, Garibaldi A (2020b) Evaluation of different carbon sources for anaerobic soil disinfestation against Rhizoctonia solani on lettuce in controlled production systems. Phytopathol Mediterr 59:77–96

    Article  CAS  Google Scholar 

  • Gold SE, Stanghellini ME (1985) Effects of temperature on Pythium root rot of spinach grown under hydroponic conditions. Phytopathology 75:333–337

    Article  Google Scholar 

  • Gómez-Merino FC, Trejo-Téllez LI (2015) Biostimulant activity of phosphite in horticulture. Sci Hortic 196:82–90

    Article  CAS  Google Scholar 

  • Goud JKC, Termorshuizen AJ, Blok WJ, van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Dis 88:688–694

    Article  PubMed  Google Scholar 

  • Guan W, Zhao X, Hassell R, Thies J (2012) Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 47(2):164–170

    Article  CAS  Google Scholar 

  • Gullino ML, Munkvold G (eds) (2014) Global perspectives on the health of seeds and plant propagation material. Springer, Dordrecht, pp 47–58

    Book  Google Scholar 

  • Gullino ML, Gilardi G, Garibaldi A (2014a) Chemical and non-chemical seed dressing for leafy vegetable crops. In: Gullino ML, Munkvold G (eds) Global perspectives on the health of seeds and plant propagation material. Springer, Dordrecht, pp 125–136

    Chapter  Google Scholar 

  • Gullino ML, Gilardi G, Garibaldi A (2014b) Seed-borne pathogens of leafy vegetable crops. In: Gullino ML, Munkvold G (eds) Global perspectives on the health of seeds and plant propagation material. Springer, Dordrecht, pp 47–58

    Chapter  Google Scholar 

  • Gullino ML, Gilardi G, Ortu G, Garibaldi A (2014c) Development and implementation of rapid and specific detection techniques for seed-borne pathogens of leafy vegetable crops. In: Bonants P, Gullino ML (eds) Detection and diagnostics of plant pathogens. Springer, Dordrecht, pp 157–165

    Chapter  Google Scholar 

  • Gullino ML, Pugliese M, Garibaldi A (2015) Use of silicon amendments against foliar and vascular diseases of vegetables grown soilless. In: Sangeetha G, Kurucheve V, Jayaraj J (eds) Sustainable crop disease management using natural products. Cabi, Delémont, pp 293–307

    Chapter  Google Scholar 

  • Gullino ML, Pugliese M, Gilardi G, Garibaldi A (2018) Effect of increased CO2 and temperature on plant diseases: a critical appraisal of results obtained in studies carried out under controlled environment facilities. J Plant Pathol 100:371–389

    Article  Google Scholar 

  • Gullino ML, Albajes R, Nicot P (eds) (2020a) Integrated pest and disease management in greenhouse crops. Springer, Dordrecht

    Google Scholar 

  • Gullino ML, Tabone G, Gilardi G, Garibaldi A (2020b) Effects of elevated atmospheric CO2 and temperature on the management of powdery mildew of zucchini. J Phytopathol 168:405–415

    Article  CAS  Google Scholar 

  • Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP (2020) Altering plant architecture to improve performance and resistance. Trends Plant Sci 25(11):1154–1170. https://doi.org/10.1016/j.tplants.2020.05.009

    Article  CAS  PubMed  Google Scholar 

  • Hajlaoui MR, Bélanger RR (1991) Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Neth J Plant Pathol 97:203–208

    Article  Google Scholar 

  • Hausbeck MK, Moorman GW (1996) Managing Botrytis in greenhouse-grown flower crops. Plant Dis 80:1212–1219

    Article  Google Scholar 

  • He LM, Cui KD, Li TT, Song YF, Liu N, Mu W, Liu F (2020) Evolution of the resistance of Botrytis cinerea to carbendazim and the current efficacy of carbendazim against gray mold after long-term discontinuation. Plant Dis 104(6):1647–1653. https://doi.org/10.1094/pdis-11-19-2457-re

    Article  CAS  PubMed  Google Scholar 

  • Hillocks RJ (2012) Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31(1):85–93. https://doi.org/10.1016/j.cropro.2011.08.008

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Krause MS, Han DY (2001) Spectrum and mechanisms of plant disease control with composts. In: Hoitink H, Keener H (eds) Compost utilization in horticultural crop** systems. CRC Press, Boca Raton, pp 263–274

    Google Scholar 

  • Hokkanen HMT, Menzler-Hokkanen I, Lahdenpera ML (2015) Managing bees for delivering biological control agents and improved pollination in berry and fruit cultivation. Sustain Agric Res 4(3):89–102

    Google Scholar 

  • Honda Y, Yunoki T (1977) Control of Sclerotinia disease of greenhouse eggplant and cucumber by inhibition of development of apothecia. Plant Dis Rep 61:1036–1040

    Google Scholar 

  • IBMA (2019) Definition: bioprotection as the global term for all biocontrol technologies. International Biocontrol Manufacturers Association, Brighton

    Google Scholar 

  • Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, St. Paul

    Google Scholar 

  • Ji P, Yin J, Koné D (2011) Application of acibenzolar-S-methyl and standard fungicides for control of Phytophthora blight on squash. Crop Prot 30:1601–1605

    Article  CAS  Google Scholar 

  • Kanetis L, Christodoulou S, Iacovides T (2017) Fungicide resistance profile and genetic structure of Botrytis cinerea from greenhouse crops in Cyprus. Eur J Plant Pathol 147(3):527–540. https://doi.org/10.1007/s10658-016-1020-9

    Article  CAS  Google Scholar 

  • Kennedy R, Pegg GF (1990) Phytophthora cryptogea root rot of tomato in rock wool nutrient culture. II. Effect of root zone temperature on infection, sporulation and symptom development. Ann Appl Biol 117:537–551

    Article  Google Scholar 

  • King SR, Davis AR, Liu WG, Levi A (2008) Grafting for disease resistance. HortScience 43:1673–1676

    Article  Google Scholar 

  • Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123

    Article  PubMed  Google Scholar 

  • Koch E, Roberts SJ (2014) Non-chemical seed treatment in the control of seed-borne pathogens. In: Gullino ML, Munkvold GP (eds) Global perspectives on the health of seeds and plant propagation material. Springer, Dordrecht, pp 105–123

    Chapter  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845. https://doi.org/10.3389/fpls.2019.00845

    Article  PubMed  PubMed Central  Google Scholar 

  • Koller M (2011) Potassium bicarbonate as a potential sulphur substitute in protected organic crop**. Acta Hortic 915:157–163

    Article  CAS  Google Scholar 

  • Koné D, Csinos AS, Jackson KL, Ji P (2009) Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Prot 28:533–538

    Article  CAS  Google Scholar 

  • Kousik CS, Mandal M, Hassell R (2018) Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings. Plant Dis 102(7):1290–1298

    Article  PubMed  Google Scholar 

  • Kruidhof HM, Elmer WH (2020) Cultural methods for greenhouse pest and disease management. In: Gullino ML, Albajes R, Nicot PC (eds) Integrated pest and disease management in greenhouse crops. Springer, Dordrecht, pp 285–330

    Chapter  Google Scholar 

  • Kudsk P, Mathiassen SK (2020) Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci 68(3):214–222. https://doi.org/10.1017/wsc.2019.59

    Article  Google Scholar 

  • Kunjeti SG, Anchieta A, Martin FN, Choi YJ, Thines M, Michelmore RW, Koike ST, Tsuchida C, Mahaffee W, Subbarao KV, Klosterman SJ (2016) Detection and quantification of Bremia lactucae by spore trap** and quantitative PCR. Phytopathology 106(11):1426–1437

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis 100(1):10–24. https://doi.org/10.1094/pdis-05-15-0574-fe

    Article  PubMed  Google Scholar 

  • Lamont WJ Jr (2009) Overview of the use of high tunnels worldwide. HortTechnology 19(1):25–29

    Article  Google Scholar 

  • Larkin RP (2015) Soil health paradigms and implications for disease management. Annu Rev Phytopathol 53:199–221

    Article  CAS  PubMed  Google Scholar 

  • Leadbeater A, Gisi U (2010) The challenges of chemical control of plant diseases. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases. Springer, Geneva, pp 3–17

    Chapter  Google Scholar 

  • Lecompte F, Goillon C, Gard B, Raynal C, Vaud E, Barriere V, Maisonneuve B, Rousselière D, Garnodier J, Nicot P (2019) Limitation de l’usage des pesticides sur des cultures de laitue d’abri: bilan du projet DEPHY EXPE LILLA. Innov Agron 76:35–50

    Google Scholar 

  • Lefebvre V, Boissot N, Gallois J-L (2020) Host plant resistance to pests and pathogens, the genetic leverage in integrated pest and disease management. In: Integrated pest and disease management in greenhouse crops. Springer, Cham, pp 259–283

    Chapter  Google Scholar 

  • Lievens B, Hanssen IM, Rep M (2012) Recent developments in the detection and identification of formae speciales and races of Fusarium oxysporum: from pathogenicity testing to molecular diagnostics. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable and ornamental crops. APS Press, St. Paul, pp 47–55

    Google Scholar 

  • Liu JB, Gilardi G, Gullino ML, Garibaldi A (2009) Effectiveness of Trichoderma spp. obtained from re-used soilless substrates against Pythium ultimum on cucumber seedlings. J Plant Dis Protect 116:156–163

    Article  Google Scholar 

  • Lobato MC, Olivieri FP, Daleo GR, Andreu AB (2010) Antimicrobial activity of phosphites against different potato pathogens. J Plant Dis Protect 117:102–109

    Article  CAS  Google Scholar 

  • Louws FJ, Rivard CL, Kubota C (2010) Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hortic 127(2):127–146. https://doi.org/10.1016/j.scienta.2010.09.023

    Article  Google Scholar 

  • Lu P, Gilardi G, Gullino ML, Garibaldi A (2010) Biofumigation with Brassica plants and its effect on the inoculum potential of Fusarium yellows of Brassica crops. Eur J Plant Pathol 126:387–402

    Article  Google Scholar 

  • Mahlein AK, Kuska MT, Thomas S, Wahabzada M, Behmann J, Rascher U, Kersting K (2019) Quantitative and qualitative phenoty** of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed! Curr Opin Plant Biol 50:156–162. https://doi.org/10.1016/j.pbi.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  • Mamo BE, Hayes RJ, Truco MJ, Puri KD, Michelmore RW, Subbarao KV, Simko I (2019) The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theor Appl Genet 132(8):2439–2460. https://doi.org/10.1007/s00122-019-03365-6

    Article  CAS  PubMed  Google Scholar 

  • Marchand G, Nicot PC, Albajes R, Carisse O (2020) Epidemiology and population dynamics: modelisation, monitoring and management. In: Gullino ML, Albajes R, Nicot PC (eds) Integrated pest and disease management in greenhouse crops. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Marian M, Shimizu M (2019) Improving performance of microbial biocontrol agents against plant diseases. J Gen Plant Pathol 85(5):329–336. https://doi.org/10.1007/s10327-019-00866-6

    Article  Google Scholar 

  • Marin MV, Franco CA, Smilde D, Panizzi RC, Braz LT (2020) Distribution of races and virulence factors of Bremia lactucae in the main lettuce production area in Brazil. J Plant Pathol 102(2):395–407. https://doi.org/10.1007/s42161-019-00444-x

    Article  Google Scholar 

  • Marrone PG (2019) Pesticidal natural products – status and future potential. Pest Manag Sci 75(9):2325–2340. https://doi.org/10.1002/ps.5433

    Article  CAS  PubMed  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Matheron ME, Porchas M (2002) Suppression of Phytophthora root and crown rot on pepper plants treated with acibenzolar-S-methyl. Plant Dis 86:292–297

    Article  CAS  PubMed  Google Scholar 

  • Matheron ME, Porchas M (2010) Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis 94:1323–1328

    Article  PubMed  Google Scholar 

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265

    Article  CAS  Google Scholar 

  • Mattner SW, Porter IJ, Gounder RK, Shanks AL, Wren DJ, Allen D (2008) Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Prot 27:1165–1173

    Article  CAS  Google Scholar 

  • Mazzola M, Freilich S (2017) Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology 107(3):256–263. https://doi.org/10.1094/phyto-09-16-0330-rvw

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Brown J, Izzo AD, Cohen MF (2007) Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a Brassicaceae species and time-dependent manner. Phytopathology 97:454–460

    Article  PubMed  Google Scholar 

  • Mazzola M, Reardon CL, Brown J (2012) Initial Pythium species composition and Brassicaceae seed meal type influence extent of Pythium-induced plant growth suppression in soil. Soil Biol Biochem 48:20–27

    Article  CAS  Google Scholar 

  • Mbofung GCY, Pryor BM (2010) A PCR-based assay for detection of Fusarium oxysporum f. sp. lactucae in lettuce seed. Plant Dis 94:860–866

    Article  CAS  PubMed  Google Scholar 

  • McCarty DG, Inwood SEE, Ownley BH, Sams CE, Wszelaki AL, Butler DM (2014) Field evaluation of carbon sources for anaerobic soil disinfestation in tomato and bell pepper production in Tennessee. HortScience 49:272–280

    Article  Google Scholar 

  • McVey EA, Wassenberg J (2020) Regulatory processes surrounding the risk assessment of microbial pesticides for pollinators. In: Entomovectoring for precision biocontrol and enhanced pollination of crops. Springer, Cham, pp 251–261

    Chapter  Google Scholar 

  • Menzler-Hokkanen I (2016) Safety of Prestop® Mix to pollinators: a critical review of its properties and use in entomovectoring. Response to the article by Karise et al. (2015). J Pest Sci 89(1):179–182. https://doi.org/10.1007/s10340-015-0703-x

    Article  Google Scholar 

  • Michel V, Verbeek F, Pugliese M (2015) Success and failures of grafting against soil-borne pathogens. In: Focus group on soil-borne diseases. Epi-agri. Available via https://ec.europa.eu/eip/agriculture/sites/agrieip/files/3_eip_sbd_mp_grafting_final.pdf. Accessed 28 Nov 2020

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25(5):468–475

    Article  Google Scholar 

  • Miyamoto T, Hayashi K, Ogawara T (2020a) First report of the occurrence of multiple resistance to Flutianil and Pyriofenone in field isolates of Podosphaera xanthii, the causal fungus of cucumber powdery mildew. Eur J Plant Pathol 156(3):953–963. https://doi.org/10.1007/s10658-020-01946-6

    Article  CAS  Google Scholar 

  • Miyamoto T, Hayashi K, Okada R, Wari D, Ogawara T (2020b) Resistance to succinate dehydrogenase inhibitors in field isolates of Podosphaera xanthii on cucumber: monitoring, cross-resistance patterns and molecular characterization. Pestic Biochem Physiol 169:104646. https://doi.org/10.1016/j.pestbp.2020.104646

    Article  CAS  PubMed  Google Scholar 

  • Morra L, Bilotto M (2006) Evaluation of new rootstocks for resistance to soil-borne pathogens and productive behaviour of pepper (Capsicum annuum L.). J Hortic Sci Biotechnol 81(3):518–524

    Article  Google Scholar 

  • Munkvold GP (2009) Seed pathology progress in academia and industry. Annu Rev Phytopathol 47:285–311

    Article  CAS  PubMed  Google Scholar 

  • Munkvold GP, Gullino ML (2020) Seed and propagative material. In: Gullino ML, Albajes R, Nicot PC (eds) Integrated pest and disease management in greenhouse crops. Springer, Dordrecht, pp 331–354

    Chapter  Google Scholar 

  • Myresiotis CK, Karaoglanidis GS, Vryzas Z, Papadopoulou-Mourkidou E (2012) Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Manag Sci 68(3):404–411

    Article  CAS  PubMed  Google Scholar 

  • Nega E, Ulrich R, Werner S, Jahn M (2003) Hot water treatment of vegetable seed – an alternative seed treatment method to control seed-borne pathogens in organic farming. J Plant Dis Protect 110(3):220–234

    Google Scholar 

  • Nelson PV (1985) Greenhouse operation and management. Prentice-Hall, New Brunswick

    Google Scholar 

  • Nicot PC, Bardin M (2012) Biological and integrated protection in the Mediterranean greenhouse: is disease management the weak link? IOBC WPRS Bull 80:11–17

    Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Tech 15:3–20

    Article  Google Scholar 

  • Ojiambo PS, Yuen J, van den Bosch F, Madden LV (2017) Epidemiology: past, present, and future impacts on understanding disease dynamics and improving plant disease management – a summary of focus issue articles. Phytopathology 107:1092–1094

    Article  CAS  PubMed  Google Scholar 

  • Ozyilmaz U (2020) Evaluation of the effectiveness of antagonistic bacteria against Phytophthora blight disease in pepper with artificial intelligence. Biol Control 151:104379. https://doi.org/10.1016/j.biocontrol.2020.104379

    Article  CAS  Google Scholar 

  • Pardo-Alonso J-L, Carreño-Ortega Á, Martínez-Gaitán C-C, Fatnassi H (2020) Behavior of different grafting strategies using automated technology for splice grafting technique. Appl Sci 10(8):2745

    Article  CAS  Google Scholar 

  • Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco M-J, Crute I, Michelmore R (2016) Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210(3):309–326. https://doi.org/10.1007/s10681-016-1687-1

    Article  CAS  Google Scholar 

  • Pasquali M, Saravanakumar D, Gullino ML, Garibaldi A (2008) Sequence specific amplified polymorphism (SSAP) technique to analyse Fusarium oxysporum f. sp. lactucae VCG 0300 isolate from lettuce. J Plant Pathol 90:527–535

    CAS  Google Scholar 

  • Pavlou GC, Vakalounakis DJ (2005) Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot 24:135–140

    Article  Google Scholar 

  • Pavlou GC, Vakalounakis DJ, Ligoxigakis EK (2002) Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Dis 86:379–382

    Article  CAS  PubMed  Google Scholar 

  • Pelletier B, Porchet M, Guillou A, Lambert MO, Goillon C, Souriau R (2019) DEPHY Serre – productions sous serres tomates et concombres: tendre vers le zéro intrant phytosanitaire. Innov Agron 76:17–34

    Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14(2):117–129

    Article  Google Scholar 

  • Pérez-Hernández A, Porcel-Rodríguez E, Gómez-Vázquez J (2017) Survival of Fusarium solani f. sp. cucurbitae and fungicide application, soil solarization, and biosolarization for control of crown and foot rot of zucchini squash. Plant Dis 101:1507–1514

    Article  PubMed  Google Scholar 

  • Philipp WD, Grauer U, Grossmann F (1984) Erganzende Untersuchungen zur biologischen und integrierten Bekampfung von Gurkenmehltau unter Glas durch Ampelomyces quisqualis. ZPflanzenkr Pflanzenschutz 91:438–443

    Google Scholar 

  • Postma J (2010) The status of biological control of plant diseases in soilless cultivation. In: Gisi U, Chet I, Gullino ML (eds) Recent developments in management of plant diseases. Springer, Dordrecht, pp 133–146

    Chapter  Google Scholar 

  • Postma J, Geraats BPJ, Pastoor R, van Elsas JD (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95:808–818

    Article  CAS  PubMed  Google Scholar 

  • Prabha K (2020) Disease sniffing robots to apps fixing plant diseases: applications of artificial intelligence in plant pathology – a mini review. Indian Phytopathol. https://doi.org/10.1007/s42360-020-00290-3

  • Pugliese M, Liu BP, Gullino ML, Garibaldi A (2008) Selection of antagonists from compost to control soil-borne pathogens. J Plant Dis Protect 115:220–228

    Article  Google Scholar 

  • Pugliese M, Benetti A, Garibaldi A, Gullino ML (2014) Use of compost from different origins to control soilborne pathogens in potted vegetables. Acta Hortic 1044:145–148

    Article  Google Scholar 

  • Pugliese M, Gilardi G, Garibaldi A, Gullino ML (2015) Organic amendments and soil suppressiveness: results with vegetable and ornamental crops. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management, Soil biology 46. Springer, Cham, pp 495–509

    Chapter  Google Scholar 

  • Radetsky L, Patel JS, Rea MS (2020) Continuous and intermittent light at night, using red and blue LEDs to suppress basil downy mildew sporulation. HortScience 55:483–486

    Article  Google Scholar 

  • Rahmanpour S, Backhouse D, Nonhebel HM (2009) Induced tolerance of Sclerotinia sclerotiorum to isothiocyanates and toxic volatiles from Brassica species. Plant Pathol 58:479–486

    Article  CAS  Google Scholar 

  • Reuveni R, Raviv M (1992) The effect of spectrally-modified polyethylene films on the development of Botrytis cinerea in greenhouse grown tomato pants. Biol Agric Hortic 9:77–86

    Article  Google Scholar 

  • Reuveni R, Raviv M, Bar R (1989) Sporulation of Botrytis cinerea as affected by photoselective sheets and filters. Ann Appl Biol 115:417–424

    Article  Google Scholar 

  • Rivard CL, Louws FJ (2008) Grafting to manage soilborne diseases in heirloom tomato production. HortScience 43:2104–2111

    Article  Google Scholar 

  • Rivard CL, O’Connell S, Peet MM, Louws FJ (2010) Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and Southern root-knot nematode. Plant Dis 94:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Roberti R, Veronesi A, Flamigni F (2012) Evaluation of microbial products for the control of zucchini foot and root rot caused by Fusarium solani f. sp. cucurbitae race 1. Phytopathol Mediterr 51(2):317–331

    Google Scholar 

  • Rodríguez-Molina MC, Serrano-Pérez P, Palo C (2016) Effect of biofumigation with brassica pellets combined with Brassicaceae cover crops and plastic cover on the survival and infectivity of inoculum of Phytophthora nicotianae Breda de Haan. Pest Manag Sci 72:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83(1–2):155–189

    Article  CAS  PubMed  Google Scholar 

  • Sakata Y, Sugiyama M, Ohara T, Morishita M (2006) Influence of rootstocks on the resistance of grafted cucumber (Cucumis sativus L.) scions to powdery mildew (Podosphaera xanthii U. Braun & N. Shishkoff). J Jpn Soc Hortic Sci 75:135–140

    Article  Google Scholar 

  • Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S, Terzano R, Cesco S (2019) Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Front. Plant Sci 10:923. https://doi.org/10.3389/fpls.2019.00923

    Article  Google Scholar 

  • Sanogo S, Ji P (2012) Integrated management of Phytophthora capsici on solanaceous and cucurbitaceous crops: current status, gaps in knowledge and research needs. Can J Plant Pathol 34:479–492

    Article  Google Scholar 

  • Sasaki T, Honda Y, Umekawa M, Nemoto M (1985) Control of certain diseases of greenhouse vegetables with ultraviolet-absorbing vinyl film. Plant Dis 69:530–533

    Article  Google Scholar 

  • Sautua FJ, Baron C, Pérez-Hernández O, Carmona MA (2019) First report of resistance to carbendazim and procymidone in Botrytis cinerea from strawberry, blueberry and tomato in Argentina. Crop Prot 125:104879. https://doi.org/10.1016/j.cropro.2019.104879

    Article  CAS  Google Scholar 

  • Savigliano R, Hanich Z, Pugliese M, Pizano M (2014) High quality compost: a promising future for sustainable agro-industry in Morocco. Acta Hortic 1044:119–125

    Article  Google Scholar 

  • Savvas D, Gianquinto G, Tuzel Y, Gruda N (2013) Soilless culture. In: Good agricultural practices for greenhouse vegetable crops. Principles for Mediterranean climate areas, FAO plant production and protection paper 217. FAO, Rome, pp 303–354

    Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107(11):1284–1297. https://doi.org/10.1094/phyto-03-17-0111-rvw

    Article  PubMed  Google Scholar 

  • Serrano-Pérez P, Rosskopf E, De Santiago A, Rodríguez-Molina MC (2017a) Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper. Sci Hortic 215:38–48

    Article  Google Scholar 

  • Serrano-Pérez P, Palo C, Rodríguez-Molina MDC (2017b) Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Sci Hortic 216:126–133

    Article  Google Scholar 

  • Shtienberg D, Elad Y, Bornstein M, Ziv G, Grava A, Cohen S (2010) Polyethylene mulch modifies greenhouse microclimate and reduces infection of Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Phytopathology 100:97–104

    Article  CAS  PubMed  Google Scholar 

  • Siciliano I, Berta F, Bosio P, Gullino ML, Garibaldi A (2017a) Effect of different temperatures and CO2 levels on Alternaria toxins produced on cultivated rocket, cabbage and cauliflower. World Mycotoxin J 10:63–71

    Article  CAS  Google Scholar 

  • Siciliano I, Bosio P, Gilardi G, Gullino ML, Garibaldi A (2017b) Verrucarin A and roridin E produced on spinach by Myrothecium verrucaria under different temperatures and CO2 levels. Mycotoxin Res 33:139–146

    Article  CAS  PubMed  Google Scholar 

  • Soares MA, Campos MR, Passos LC, Carvalho GA, Haro MM, Lavoir A-V, Biondi A, Zappalà L, Desneux N (2019) Botanical insecticide and natural enemies: a potential combination for pest management against Tuta absoluta. J Pest Sci 92(4):1433–1443. https://doi.org/10.1007/s10340-018-01074-5

    Article  Google Scholar 

  • Soares MA, Carvalho GA, Campos MR, Passos LC, Haro MM, Lavoir A-V, Biondi A, Zappalà L, Desneux N (2020) Detrimental sublethal effects hamper the effective use of natural and chemical pesticides in combination with a key natural enemy of Bemisia tabaci on tomato. Pest Manag Sci 76(11):3551–3559

    Article  CAS  PubMed  Google Scholar 

  • Spanò R, Ferrara M, Gallitelli D, Mascia T (2020a) The role of grafting in the resistance of tomato to viruses. Plants 9(8):1042

    Article  PubMed Central  CAS  Google Scholar 

  • Spanò R, Ferrara M, Montemurro C, Mulè G, Gallitelli D, Mascia T (2020b) Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 10(1):2538. https://doi.org/10.1038/s41598-020-59421-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan K, Gilardi G, Garibaldi A, Gullino ML (2009) Bacterial antagonists from used rockwool soilless substrates suppress Fusarium wilt of tomato. J Plant Pathol 91:147–154

    Google Scholar 

  • Stanghellini ME, Rasmussen SL (1994) Hydroponics: a solution for zoosporic pathogens. Plant Dis 78:1129–1138

    Article  Google Scholar 

  • Strauss SL, Kluepfel DA (2015) Anaerobic soil disinfestation: a chemical-independent approach to pre-plant control of plant pathogens. J Integr Agric 14:2309–2318

    Article  CAS  Google Scholar 

  • Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, Steinberg C, Zmora-Nahum S (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38:2461–2477

    Article  CAS  Google Scholar 

  • Thomas JE, Wood TA, Gullino ML, Ortu G (2017) Diagnostic tools for plant biosecurity. In: Gullino ML, Stack JP, Fletcher J, Mumford JD (eds) Practical tools for plant and food biosecurity. Springer, Dordrecht, pp 209–226

    Chapter  Google Scholar 

  • Toumi K, Joly L, Vleminckx C, Schiffers B (2019) Exposure of workers to pesticide residues during re-entry activities: a review. Hum Ecol Risk Assess 25(8):2193–2215

    Article  CAS  Google Scholar 

  • Utkhede RS, Levesque CA, Dinh D (2000) Pythium aphanidermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. Can J Plant Pathol 22:138–144

    Article  Google Scholar 

  • Vallance D, Guérin-Dubrana F, Blancard D, Rey P (2011) Pathogenic and beneficial microorganisms in soilless cultures. Agron Sustain Dev 31:191–203

    Article  Google Scholar 

  • van Aubel G, Buonatesta R, Van Cutsem P (2014) COS-OGA: a novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Prot 65:129–137

    Article  CAS  Google Scholar 

  • Van Hese N, Huang C-J, De Vleesschauwer D, Delaere I, Pauwelyn E, Bleyaert P, Höfte M (2016) Evolution and distribution of virulence characteristics of Belgian Bremia lactucae populations between 2008 and 2013. Eur J Plant Pathol 144(2):431–441

    Article  CAS  Google Scholar 

  • van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19(6):375–384. https://doi.org/10.1016/S0261-2194(00)00038-7

    Article  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59. https://doi.org/10.1007/s10526-017-9801-4

    Article  Google Scholar 

  • Vielba-Fernández A, de Vicente A, Pérez-García A, Fernández-Ortuño D (2019) Monitoring methyl benzimidazole carbamate-resistant isolates of the cucurbit powdery mildew pathogen, Podosphaera xanthii, using loop-mediated isothermal amplification. Plant Dis 103(7):1515–1524. https://doi.org/10.1094/pdis-12-18-2256-re

    Article  CAS  PubMed  Google Scholar 

  • Vielba-Fernández A, Polonio A, Ruiz-Jiménez L, de Vicente A, Pérez-Garcia A, Fernández-Ortuño D (2020) Fungicide resistance in powdery mildew fungi. Microorganisms 8(9):1431. https://doi.org/10.3390/microorganisms8091431

    Article  CAS  PubMed Central  Google Scholar 

  • Villeneuve F, Torres M (2016) Que peut-on attendre du greffage dans la maîtrise des bioagresseurs? Perspectives. Rencontres techniques Agriculture Biologique Légumes CTIFL/ITAB, Carquefou, 17 Mar 2016

    Google Scholar 

  • Walters DR, Fountaine JM (2009) Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J Agric Sci 147:523–535

    Article  CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • West JS, Townsend JA, Stevens M, Fitt BDL (2012) Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol 133:315–331

    Article  Google Scholar 

  • Wharton PS, Kirk WW, Schafer RL, Tumbalam P (2012) Evaluation of biological seed treatments in combination with management practices for the control of seed-borne late blight in potato. Biol Control 63:326–332

    Article  Google Scholar 

  • Whitmyre GK, Ross JH, Ginevan ME, Eberhart D (2005) Development of risk-based restricted entry intervals. In: Occupational and residential exposure assessment for pesticides. Blackwell Scientific Publishers, Oxford, UK, pp 45–69. https://doi.org/10.1002/0470012218.ch2

    Chapter  Google Scholar 

  • Wittwer SH, Castilla N (1995) Protected cultivation of horticultural crops worldwide. HortTechnology 5:6–23

    Article  Google Scholar 

  • Wyenandt CA, McGrath MT, Everts KL, Rideout SL, Gugino BK, Kleczewski N (2018) Fungicide resistance management guidelines for cucurbit downy and powdery mildew control in the Mid-Atlantic and Northeast regions of the United States in 2018. Plant Health Prog 19(1):34–36. https://doi.org/10.1094/php-12-17-0077-br

    Article  Google Scholar 

  • Yilmaz S, Celik I, Zengin S (2011) Combining effects of soil solarization and grafting on plant yield and soil-borne pathogens in cucumber. Int J Plant Prod 5:95–104

    Google Scholar 

  • Zhao JJ, Bi QY, Wu J, Lu F, Han XY, Wang WQ (2019) Occurrence and management of fungicide resistance in Botrytis cinerea on tomato from greenhouses in Hebei, China. J Phytopathol 167(7–8):413–421. https://doi.org/10.1111/jph.12812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement EUCLID EU-CHINA Lever for IPM Demonstration, No. 633999 (EUCLID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lodovica Gullino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nicot, P.C., Gilardi, G., Gard, B., Gullino, M.L. (2022). Vegetable and Herb Disease Management in Protected Culture. In: Elmer, W.H., McGrath, M., McGovern, R.J. (eds) Handbook of Vegetable and Herb Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35512-8_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35512-8_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35512-8

  • Online ISBN: 978-3-030-35512-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation