Advances in Nano-finishing of Optical Glasses and Glass Ceramics

  • Reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Optical glass and glass ceramic components with angstrom-level surface roughness and nanometer-level dimensional accuracy are in potential demand for sophisticated optical fabrication. In recent years, aspherical and free-form surfaces are gaining prominence for high performance applications. Moreover, the new optical materials and fabrication process which exhibit superior mechanical properties are being developed to meet the stringent requirements and harsh environment. Fabrication of complex-shaped high optical finish components becomes a significant challenge as conventional finishing techniques are unable to machine aspherical or free-form surfaces precisely. This situation demands few highly advanced and precise finishing processes which ensure stress-free surfaces. Mostly, the optical components are fabricated by sha** or pre-finishing methods followed by final finishing processes. Final finishing processes include more deterministic and flexible polishing techniques that can achieve desired surface finish, figure accuracy and surface integrity to make it suitable for shorter wavelength applications. In this chapter, basic principle, mechanism of various material removal processes, and precision polishing techniques such as magnetorheological fluid-based finishing were discussed and are compared with the convention polishing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Church EL, Jenkinson HA, Zavada JM (1979) Relationship between surface scattering and micro-topographic features. Opt Eng 18:125–136

    Article  Google Scholar 

  2. Hank H (1993) Karow, fabrication methods for precision optics. A Wiley Interscience Publications, New York

    Google Scholar 

  3. Fahnle OW, Van Brug H (1999) novel approaches to generate aspherical optical surfaces, part of SPIE conference on optical manufacturing and testing III Denver, July 1999

    Google Scholar 

  4. Yamauchi K, Yamamura K, Mimura H, Sano Y, Saito A, Souvorov A, Yabashi M, Tamasaku K, Ishikawa T, Mori Y (2002) Nearly diffraction-limited line focusing of a hard X-ray beam with an elliptically figured mirror. J Synchrotron Radiat 9:313–316

    Article  Google Scholar 

  5. Mimura H, Yamauchi K, Yamamura K, Kubota A, Matsuyama S, Sano Y, Ueno K, Endo K, Nishino Y, Tamasaku K, Yabashi M, Ishikawa T, Mori Y (2004) Image quality improvement in a hard X-ray projection microscope using total reflection mirror optics. J Synchrotron Radiat 11:343–346

    Article  Google Scholar 

  6. Mimura H, Takei Y, Kume T, Takeo Y, Motoyama H, Egawa S, Matsuzawa Y, Yamaguchi G, Senba Y, Kishimoto H, Ohashi H (2018) Fabrication of a precise ellipsoidal Mirror for soft X-ray Nanofocusing. Rev Sci Instrum 89:093104

    Article  Google Scholar 

  7. Yumoto H, Mimura H, Matsuyama S, Hara H (2005) Fabrication of elliptically figured mirror for focusing hard X-rays to size less than 50nm. Rev Sci Instrum 76:063708

    Article  Google Scholar 

  8. Matsuyama S, Mimura H, Yumoto H (2005) Diffraction-limited two-dimensional hard X-ray focusing at the 100nm level using a kirkpatrick-baez mirror arrangement. Rev Sci Instrum 76:083114

    Article  Google Scholar 

  9. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a novel technology for machining brittle materials. Trans ASME 113:184–189

    Google Scholar 

  10. Kim J-D, Nam S-R (1996) A piezoelectric driven micro-positioning system for the ductile-mode grinding of brittle materials. J Mater Process Tech 16:309–319

    Google Scholar 

  11. Allen SD, Braunstein M, Guiliano C, Wang V(1974) Laser induced damage in optical materials: NBS special publication 414:66–75

    Google Scholar 

  12. Bennet JM, King RJ (1970) Effect of polishing technique on the roughness and residual surface film on fused quartz optical flats. Appl Opt 9(1):236–238

    Article  Google Scholar 

  13. Xu W (2019) Yanyao Cheng, min Zhong, effects of process parameters on chemical-mechanical interactions during sapphire polishing. Microelectron Eng 216:111029

    Article  CAS  Google Scholar 

  14. Mao M, Chen W, Liu J, Hu Z, Qin C (2020) Chemical mechanism of chemical-mechanical polishing of tungsten cobalt cemented carbide inserts. Int J Refract Met Hard Mater 88:105179

    Article  CAS  Google Scholar 

  15. Dietz RW, Bennet ZL (1966) Bowl feed technique for producing supersmooth optical surface. Appl Opt 5:881–882

    Article  CAS  Google Scholar 

  16. Van Wingerden J, Frankena HJ, Van der Zwam BA (1992) Production and measurement of super polished surfaces. Opt Eng 31(5):1086–1092

    Article  Google Scholar 

  17. Dietz RW, Bennett JM (1966) Bowl feed technique for producing Supersmooth optical surfaces. Appl Opt 5:881

    Article  CAS  Google Scholar 

  18. Soares SF, Baselt DR, Black JP, Jungling KC, Stowell WK (1994) Float-polishing process and analysis of float polished quartz. Appl Opt 33(1):89–95

    Article  CAS  Google Scholar 

  19. Hirata T, Takei Y, Mimura H (2014) Machining property in smooting of steeply curved surfaces by elastic emission machining. Proc CIRP 13:198–202

    Article  Google Scholar 

  20. Mori Y, Yamauchi Y, Yamamura K (2001) Development of plasma chemical vaporization machining and elastic emission machining systems for coherent x-ray optics. Proc SPIE 4501:30

    Article  CAS  Google Scholar 

  21. Kordonski WI, Golini D (1998) Magnetorheological suspension-based high precision finishing technology (MRF). J Intell Mater Syst Struct 9(8):650–654

    Article  Google Scholar 

  22. Kordonski WI, Golini D (1999) Fundamentals of magnetorheological fluid utilization in high precision finishing. J Intell Mater Syst Struct 10(9):683–689

    Article  Google Scholar 

  23. Kordonski WI, Golini D (1999) Progress update in magnetorheological finishing. Int J Mod Phys B 13:2205–2212

    Article  Google Scholar 

  24. Kordonski WI, Jacobs S (1996) Magnetorheological finishing. Int J Mod Phys B 10:2837–2848

    Article  CAS  Google Scholar 

  25. Kordonski WI (2014) Magnetorheological Fluid-Based High Precision Finishing Technology, Chapter 11. In: Wereley NM (ed) Magnetorheology: Advances and Applications. RSC Smart Materials, Cambridge, pp 261–277

    Google Scholar 

  26. Liu J, Li X, Zhang Y, Dong T, Ye M, Wang C (2020) Predicting the material removal rate in surface magnetorheological finishing based on synergistic effect of pressure and shear stress. Appl Surf Sci 504:144492

    Article  CAS  Google Scholar 

  27. Nie M, Cao J, Li J, Maohui F (2019) Magnet arrangements in a magnetic field generator for magnetorheological finishing. Int J Mech Sci 161-162:105018

    Article  Google Scholar 

  28. Dhongade SH, Suresh MB, Shanker V, Rao YS (2019) Impact of particle size distribution of non-magnetic abrasive particles on rheology of magneto-rheological polishing fluids. In: International conference advances in chemical sciences and technology

    Google Scholar 

  29. Luckham PF, Ukeje MA (1999) Effect of Particle Size Distribution on the Rheology of Dispersed Systems. J Colloid Interface Sci 356:347–356

    Article  Google Scholar 

  30. Zhang FH, Kang GW, Qiu ZJ, Dong S (2004) Magnetorheological finishing of glass ceramic. Key Eng Mater 257-258:511–514

    Article  Google Scholar 

  31. **ao YM, Bass M (1983) Thermal stress limitations to laser fire polishing of glasses. Appl Opt 22:2933–2936

    Article  CAS  Google Scholar 

  32. Weingarten C, Schmickler A, Willenborg E, Wissenbach K (2017) Laser polishing and laser shape correction of optical glass. J Laser Appl 29:011702

    Article  Google Scholar 

  33. Carter G, Nobes MJ, Katardjiev IV (1993) The theory of ion beam polishing and machining. Vacuum 44:303–309

    Article  CAS  Google Scholar 

  34. Gruner D, Faldt J, Jansson R, Shen Z (2011) Argon ion beam polishing: a preparation technique for evaluating the interface of asseointegrated implants with high resolution. Int J Oral Maxillofac Implants 26:547–552

    Google Scholar 

  35. Haghbin N, Zadeh FA, Spelt JK, Papini M (2016) High pressure abrasive slurry jet micro machining using slurry entrainment. Int J Adv Manuf Technol 84:1031–1043

    Google Scholar 

  36. Nouraei H, Wodoslawsky A, Papini M, Spelt JK (2013) Characteristics of abrasive slurry jet micro machining: A comparison with abrasive air jet micromachining. J Mater Process Technol 213:1711–1724

    Article  Google Scholar 

  37. Mader H (1990) Plasma-assisted etching. Micro Syst Technol 90:357–365

    Article  Google Scholar 

  38. Coburn JW (1998) Mechanisms in plasma-assisted etching. Phys Scr 23:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahender Kumar Gupta .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, M.K., Rasheed, I.A., Suresh, M.B. (2020). Advances in Nano-finishing of Optical Glasses and Glass Ceramics. In: Mahajan, Y.R., Johnson, R. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-030-16347-1_17

Download citation

Publish with us

Policies and ethics

Navigation