Polarized Light in Computer Vision

  • Living reference work entry
  • First Online:
Computer Vision
  • 208 Accesses

Related Concepts

Definition

Polarization refers to the orientation distribution of the electromagnetic waves that constitute light rays. The phenomenon of light polarization has been exploited in computer vision for a range of applications including surface reconstruction, specular/diffuse separation, and image enhancement.

Background

Light consists of orthogonal electric and magnetic fields. Most natural light is unpolarized and so consists of randomly fluctuating field directions. However, a range of natural phenomena (e.g., scattering and reflection) and human inventions (e.g., polarizing filters and liquid crystal displays) cause the light to become polarized. That is, the electric and magnetic fields become confined to specific planes or get constrained in other ways. In the field of computer vision, both natural and artificially generated polarized light has been utilized for a range of applications including specularity...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Horn BKP, Brooks MJ (1989) Shape from shading. MIT, Cambridge

    MATH  Google Scholar 

  2. Woodham RJ (1980) Photometric method for determining surface orientation from multiple images. Opt Eng 19:139–144

    Article  Google Scholar 

  3. Ragheb H, Hancock ER (2002) Highlight removal using shape-from-shading. In: Proceedings of European conference on computer vision (ECCV). Springer, Berlin/New York, pp 626–641

    Google Scholar 

  4. Atkinson GA, Ernst JD (2018) High-sensitivity analysis of polarization by surface reflection. Mach Vis Appl 29:1171–1189

    Article  Google Scholar 

  5. Wolff LB (1997) Polarization vision: a new sensory approach to image understanding. Image Vis Comput 15:81–93

    Article  Google Scholar 

  6. Shames PE, Sun PC, Fainman Y (1998) Modelling of scattering and depolarizing electro-optic devices. I. characterization of lanthanum-modified lead zirconate titanate. Appl Opt 37:3717–3725

    Article  Google Scholar 

  7. Miyazaki D, Takashima N, Yoshida A, Harashima E, Ikeuchi K (2005) Polarization-based shape estimation of transparent objects by using raytracing and PLZT camera. Proc SPIE 5888:1–14

    Google Scholar 

  8. Ernst J, Junger S, Neubauer H, Tschekalinskij W, Verwaal N, Weber N (2011) Nanostructured Optical filters in CMOS for Multispectral, Polarization and Image Sensors. In: Heuberger A, Elst G, Hanke R (eds.) Microelectronic Systems. Springer, Berlin, Heidelberg, pp 9–17

    Chapter  Google Scholar 

  9. Gruev V, der Spiegel JV, Enghet N (2009) Advances in integrated polarization image sensors. In: Proceedings of LiSSA workshop, Bethesda, pp 62–65

    Google Scholar 

  10. Junger S, Tschekalinskij W, Verwaal N, Weber N (2010) Polarization- and wavelength-sensitive sub-wavelength structures fabricated in the metal layers of deep submicron CMOS processes. In: Proceedings of SPIE Nanophotonics, vol 7712

    Google Scholar 

  11. Hooper BA, Baxter B, Piotrowski C, Williams JZ, Dugan J (2009) An airborne imaging multispectral polarimeter. In: Proceedings of IEEE/MTS Oceans, Biloxi

    Google Scholar 

  12. Horstmeyer R, Euliss G, Athale R, Levoy M (2009) Flexible multimodal camera using a light field architecture. In: Proceedings of computational photography (ICCP). IEEE, Piscataway, pp 1–8

    Google Scholar 

  13. Zappa CJ, Banner ML, Schultz H, Corrada-Emmanuel A, Wolff LB, Yalcin J (2008) Retrieval of short ocean wave slope using polarimetric imaging. Meas Sci Technol 19:055503

    Article  Google Scholar 

  14. Tyo JS, Goldstein DL, Chenault DB, Shaw JA (2006) Review of passive imaging polarimetry for remote sensing applications. Appl Opt 45:5453–5469

    Article  Google Scholar 

  15. Wolff LB, Boult TE (1991) Constraining object features using a polarisation reflectance model. IEEE Trans Pattern Anal Mach Intell 13:635–657

    Article  Google Scholar 

  16. Wolff LB (1994) Diffuse-reflectance model for smooth dielectric surfaces. J Opt Soc Am A 11:2956–2968

    Article  Google Scholar 

  17. Atkinson GA, Hancock ER (2007) Shape estimation using polarization and shading from two views. IEEE Trans Pattern Anal Mach Intell 29:2001–2017

    Article  Google Scholar 

  18. Können GP (1985) Polarized light in nature. Cambridge University Press, Cambridge/New York

    Google Scholar 

  19. Schechner YY, Narashimhan SG, Nayar SK (2003) Polarization-based vision through haze. Appl Opt 42:511–525

    Article  Google Scholar 

  20. Schechner YY, Karpel N (2005) Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng 30:570–587

    Article  Google Scholar 

  21. Miyazaki D, Kagesawa M, Ikeuchi K (2004) Transparent surface modelling from a pair of polarization images. IEEE Trans Pattern Anal Mach Intell 26: 73–82

    Article  Google Scholar 

  22. Umeyama S, Godin G (2004) Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. IEEE Trans Pattern Anal Mach Intell 26:639–647

    Article  Google Scholar 

  23. Wallace AM, Liang B, Clark J, Trucco E (1999) Improving depth image acquisition using polarized light. Int J Comput Vis 32:87–109

    Article  Google Scholar 

  24. Schechner YY, Shamir J, Kiryati N (2000) Polarization and statistical analysis of scenes containing a semireflector. J Opt Soc Am 17:276–284

    Article  Google Scholar 

  25. Farid H, Adelson EH (1999) Separating reflections from images using independent components analysis. J Opt Soc Am 16:2136–2145

    Article  Google Scholar 

  26. Atkinson GA, Hancock ER (2008) Two-dimensional BRDF estimation from polarisation. Comput Vis Image Underst 111:126–141

    Article  Google Scholar 

  27. Lefaudeux N, Lechocinski N, Clemenceau P, Breugnot S (2009) New luster formula for the characterization of hair tresses using polarization imaging. J Cosmet Sci 60(2):153–169

    Google Scholar 

  28. Atkinson GA, Thornton TJ, Peynado DIC, Ernst JD (2018) High-precision polarization measurements and analysis for machine vision applications. In: Proceedings of the European workshop on visual information processing, Tampere

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Atkinson .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Atkinson, G.A. (2020). Polarized Light in Computer Vision. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_571-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_571-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation