Fractals and Wavelets : What Can We Learn on Transcription and Replication from Wavelet-Based Multifractal Analysis of DNA Sequences ?

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition of the Subject

Introduction

A Wavelet-Based Multifractal Formalism: The Wavelet Transform Modulus Maxima Method

Bifractality of Human DNA Strand-Asymmetry Profiles Results from Transcription

From the Detection of Relication Origins Using the Wavelet Transform Microscope to the Modeling of Replication in Mammalian Genomes

A Wavelet-Based Methodology to Disentangle Transcription- and Replication-Associated Strand Asymmetries Reveals a Remarkable Gene Organization in the Human Genome

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 480.43
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 316.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Fractal :

Fractals are complex mathematical objects that are invariant with respect to dilations ( self‐similarity ) and therefore do not possess a characteristic length scale. Fractal objects display scale‐invariance properties that can either fluctuate from point to point ( multifractal ) or be homogeneous ( monofractal ). Mathematically, these properties should hold over all scales. However, in the real world, there are necessarily lower and upper bounds over which self‐similarity applies.

Wavelet transform :

The continuous wavelet transform (WT) is a mathematical technique introduced in the early 1980s to perform time‐frequency analysis. The WT has been early recognized as a mathematical microscope that is well adapted to characterize the scale‐invariance properties of fractal objects and to reveal the hierarchy that governs the spatial distribution of the singularities of multifractal measures and functions. More specifically, the WT is a space-scale analysis which consists in expanding signals in terms of wavelets that are constructed from a single function, the analyzing wavelet, by means of translations and dilations.

Wavelet transform modulus maxima method :

The WTMM method provides a unified statistical (thermodynamic) description of multifractal distributions including measures and functions. This method relies on the computation of partition functions from the wavelet transform skeleton defined by the wavelet transform modulus maxima (WTMM). This skeleton provides an adaptive space-scale partition of the fractal distribution under study, from which one can extract the \({D(h)}\) singularity spectrum as the equivalent of a thermodynamic potential (entropy). With some appropriate choice of the analyzing wavelet, one can show that the WTMM method provides a natural generalization of the classical box‐counting and structure function techniques.

Compositional strand asymmetry :

The DNA double helix is made of two strands that are maintained together by hydrogen bonds involved in the base‐pairing between Adenine (resp. Guanine) on one strand and Thymine (resp. Cytosine) on the other strand. Under no‐strand bias conditions, i. e. when mutation rates are identical on the two strands, in other words when the two strands are strictly equivalent, one expects equimolarities of adenine and thymine and of guanine and cytosine on each DNA strand, a property named Chargaff's second parity rule. Compositional strand asymmetry refers to deviations from this rule which can be assessed by measuring departure from intrastrand equimolarities. Note that two major biological processes, transcription and replication , both requiring the opening of the double helix, actually break the symmetry between the two DNA strands and can thus be at the origin of compositional strand asymmetries.

Eukaryote:

Organisms whose cells contain a nucleus, the structure containing the genetic material arranged into chromosomes. Eukaryotes constitute one of the three domains of life, the two others, called prokaryotes (without nucleus), being the eubacteria and the archaebacteria.

Transcription :

Transcription is the process whereby the DNA sequence of a gene is enzymatically copied into a complementary messenger RNA. In a following step, translation takes place where each messenger RNA serves as a template to the biosynthesis of a specific protein.

Replication :

DNA replication is the process of making an identical copy of a double‐stranded DNA molecule. DNA replication is an essential cellular function responsible for the accurate transmission of genetic information though successive cell generations. This process starts with the binding of initiating proteins to a DNA locus called origin of replication . The recruitment of additional factors initiates the bi‐directional progression of two replication forks along the chromosome. In eukaryotic cells, this binding event happens at a multitude of replication origins along each chromosome from which replication propagates until two converging forks collide at a  terminus of replication .

Chromatin :

Chromatin is the compound of DNA and proteins that forms the chromosomes in living cells. In eukaryotic cells, chromatin is located in the nucleus.

Histones:

Histones are a major family of proteins found in eukaryotic chromatin. The wrap** of DNA around a core of 8 histones forms a  nucleosome , the first step of eukaryotic DNA compaction.

Bibliography

Primary Literature

  1. Goupillaud P, Grossmann A, Morlet J (1984) Cycle‐octave and related transforms in seismic signal analysis. Geoexploration 23:85–102

    Article  Google Scholar 

  2. Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736

    Article  MathSciNet  MATH  Google Scholar 

  3. Arneodo A, Argoul F, Bacry E, Elezgaray J, Freysz E, Grasseau G, Muzy J-F, Pouligny B (1992) Wavelet transform of fractals. In: Meyer Y (ed) Wavelets and applications. Springer, Berlin, pp 286–352

    Google Scholar 

  4. Arneodo A, Argoul F, Elezgaray J, Grasseau G (1989) Wavelet transform analysis of fractals: Application to nonequilibrium phase transitions. In: Turchetti G (ed) Nonlinear dynamics. World Scientific, Singapore, pp 130–180

    Google Scholar 

  5. Arneodo A, Grasseau G, Holschneider M (1988) Wavelet transform of multifractals. Phys Rev Lett 61:2281–2284

    Article  MathSciNet  Google Scholar 

  6. Holschneider M (1988) On the wavelet transform of fractal objects. J Stat Phys 50:963–993

    Article  MathSciNet  MATH  Google Scholar 

  7. Holschneider M, Tchamitchian P (1990) Régularité locale de la fonction non‐différentiable de Riemann. In: Lemarié PG (ed) Les ondelettes en 1989. Springer, Berlin, pp 102–124

    Chapter  Google Scholar 

  8. Jaffard S (1989) Hölder exponents at given points and wavelet coefficients. C R Acad Sci Paris Sér. I 308:79–81

    MathSciNet  Google Scholar 

  9. Jaffard S (1991) Pointwise smoothness, two‐microlocalization and wavelet coefficients. Publ Mat 35:155–168

    MathSciNet  MATH  Google Scholar 

  10. Mallat S, Hwang W (1992) Singularity detection and processing with wavelets. IEEE Trans Info Theory 38:617–643

    Article  MathSciNet  MATH  Google Scholar 

  11. Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Trans Patt Recog Mach Intell 14:710–732

    Article  Google Scholar 

  12. Arneodo A, Bacry E, Muzy J-F (1995) The thermodynamics of fractals revisited with wavelets. Physica A 213:232–275

    Article  Google Scholar 

  13. Bacry E, Muzy J-F, Arneodo A (1993) Singularity spectrum of fractal signals from wavelet analysis: Exact results. J Stat Phys 70:635–674

    Article  MathSciNet  MATH  Google Scholar 

  14. Muzy J-F, Bacry E, Arneodo A (1991) Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys Rev Lett 67:3515–3518

    Article  Google Scholar 

  15. Muzy J-F, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: The structure‐function approach versus the wavelet‐transform modulus‐maxima method. Phys Rev E 47:875–884

    Article  Google Scholar 

  16. Muzy J-F, Bacry E, Arneodo A (1994) The multifractal formalism revisited with wavelets. Int J Bifurc Chaos 4:245–302

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaffard S (1997) Multifractal formalism for functions part I: Results valid for all functions. SIAM J Math Anal 28:944–970

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaffard S (1997) Multifractal formalism for functions part II: Self‐similar functions. SIAM J Math Anal 28:971–998

    Article  MathSciNet  MATH  Google Scholar 

  19. Hentschel HGE (1994) Stochastic multifractality and universal scaling distributions. Phys Rev E 50:243–261

    Article  Google Scholar 

  20. Arneodo A, Audit B, Decoster N, Muzy J-F, Vaillant C (2002) Wavelet based multifractal formalism: Application to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde A, Kropp J, Schellnhuber HJ (eds) The science of disasters: Climate disruptions, heart attacks, and market crashes. Springer, Berlin, pp 26–102

    Google Scholar 

  21. Arneodo A, Manneville S, Muzy J-F (1998) Towards log‐normal statistics in high Reynolds number turbulence. Eur Phys J B 1:129–140

    Article  Google Scholar 

  22. Arneodo A, Manneville S, Muzy J-F, Roux SG (1999) Revealing a lognormal cascading process in turbulent velocity statistics with wavelet analysis. Phil Trans R Soc Lond A 357:2415–2438

    Article  MathSciNet  MATH  Google Scholar 

  23. Delour J, Muzy J-F, Arneodo A (2001) Intermittency of 1D velocity spatial profiles in turbulence: A magnitude cumulant analysis. Eur Phys J B 23:243–248

    Article  Google Scholar 

  24. Roux S, Muzy J-F, Arneodo A (1999) Detecting vorticity filaments using wavelet analysis: About the statistical contribution of vorticity filaments to intermittency in swirling turbulent flows. Eur Phys J B 8:301–322

    Article  Google Scholar 

  25. Venugopal V, Roux SG, Foufoula‐Georgiou E, Arneodo A (2006) Revisiting multifractality of high‐resolution temporal rainfall using a wavelet‐based formalism. Water Resour Res 42:W06D14

    Google Scholar 

  26. Venugopal V, Roux SG, Foufoula-Georgiou E, Arneodo A (2006) Scaling behavior of high resolution temporal rainfall: New insights from a wavelet‐based cumulant analysis. Phys Lett A 348:335–345

    Article  Google Scholar 

  27. Arneodo A, d'Aubenton-Carafa Y, Bacry E, Graves PV, Muzy J‑F, Thermes C (1996) Wavelet based fractal analysis of DNA sequences. Physica D 96:291–320

    Google Scholar 

  28. Arneodo A, Bacry E, Graves PV, Muzy J-F (1995) Characterizing long-range correlations in DNA sequences from wavelet analysis. Phys Rev Lett 74:3293–3296

    Article  Google Scholar 

  29. Audit B, Thermes C, Vaillant C, d'Aubenton Carafa Y, Muzy J-F, Arneodo A (2001) Long-range correlations in genomic DNA: A signature of the nucleosomal structure. Phys Rev Lett 86:2471–2474

    Article  Google Scholar 

  30. Audit B, Vaillant C, Arneodo A, d'Aubenton-Carafa Y, Thermes C (2002) Long-range correlations between DNA bending sites: Relation to the structure and dynamics of nucleosomes. J Mol Biol 316:903–918

    Article  Google Scholar 

  31. Arneodo A, Muzy J-F, Sornette D (1998) “Direct” causal cascade in the stock market. Eur Phys J B 2:277–282

    Article  Google Scholar 

  32. Muzy J-F, Sornette D, Delour J, Arneodo A (2001) Multifractal returns and hierarchical portfolio theory. Quant Finance 1:131–148

    Article  MathSciNet  Google Scholar 

  33. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465

    Article  Google Scholar 

  34. Ivanov PC, Rosenblum MG, Peng CK, Mietus J, Havlin S, Stanley HE, Goldberger AL (1996) Scaling behavior of heartbeat intervals obtained by wavelet‐based time‐series analysis. Nature 383:323–327

    Article  Google Scholar 

  35. Arneodo A, Argoul F, Bacry E, Muzy J-F, Tabard M (1992) Golden mean arithmetic in the fractal branching of diffusion‐limited aggregates. Phys Rev Lett 68:3456–3459

    Article  Google Scholar 

  36. Arneodo A, Argoul F, Muzy J-F, Tabard M (1992) Structural 5‑fold symmetry in the fractal morphology of diffusion‐limited aggregates. Physica A 188:217–242

    Article  Google Scholar 

  37. Arneodo A, Argoul F, Muzy J-F, Tabard M (1992) Uncovering Fibonacci sequences in the fractal morphology of diffusion‐limited aggregates. Phys Lett A 171:31–36

    Article  Google Scholar 

  38. Kuhn A, Argoul F, Muzy J-F, Arneodo A (1994) Structural‐analysis of electroless deposits in the diffusion‐limited regime. Phys Rev Lett 73:2998–3001

    Article  Google Scholar 

  39. Arneodo A, Decoster N, Roux SG (2000) A wavelet‐based method for multifractal image analysis, I. Methodology and test applications on isotropic and anisotropic random rough surfaces. Eur Phys J B 15:567–600

    Article  Google Scholar 

  40. Arrault J, Arneodo A, Davis A, Marshak A (1997) Wavelet based multifractal analysis of rough surfaces: Application to cloud models and satellite data. Phys Rev Lett 79:75–78

    Article  Google Scholar 

  41. Decoster N, Roux SG, Arneodo A (2000) A wavelet‐based method for multifractal image analysis, II. Applications to synthetic multifractal rough surfaces. Eur Phys J B 15:739–764

    Article  Google Scholar 

  42. Arneodo A, Decoster N, Roux SG (1999) Intermittency, log‐normal statistics, and multifractal cascade process in high‐resolution satellite images of cloud structure. Phys Rev Lett 83:1255–1258

    Article  Google Scholar 

  43. Roux SG, Arneodo A, Decoster N (2000) A wavelet‐based method for multifractal image analysis, III. Applications to high‐resolution satellite images of cloud structure. Eur Phys J B 15:765–786

    Article  Google Scholar 

  44. Khalil A, Joncas G, Nekka F, Kestener P, Arneodo A (2006) Morphological analysis of H I features, II. Wavelet‐based multifractal formalism. Astrophys J Suppl Ser 165:512–550

    Article  Google Scholar 

  45. Kestener P, Lina J-M, Saint-Jean P, Arneodo A (2001) Wavelet‐based multifractal formalism to assist in diagnosis in digitized mammograms. Image Anal Stereol 20:169–174

    Article  MATH  Google Scholar 

  46. Arneodo A, Decoster N, Kestener P, Roux SG (2003) A wavelet‐based method for multifractal image analysis: From theoretical concepts to experimental applications. Adv Imaging Electr Phys 126:1–92

    Article  Google Scholar 

  47. Kestener P, Arneodo A (2003) Three‐dimensional wavelet‐based multifractal method: The need for revisiting the multifractal description of turbulence dissipation data. Phys Rev Lett 91:194501

    Article  Google Scholar 

  48. Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy‐dissipation. J Fluid Mech 224:429–484

    Article  MATH  Google Scholar 

  49. Kestener P, Arneodo A (2004) Generalizing the wavelet‐based multifractal formalism to random vector fields: Application to three‐dimensional turbulence velocity and vorticity data. Phys Rev Lett 93:044501

    Article  Google Scholar 

  50. Kestener P, Arneodo A (2007) A multifractal formalism for vector‐valued random fields based on wavelet analysis: Application to turbulent velocity and vorticity 3D numerical data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0121-6

  51. Li WT, Marr TG, Kaneko K (1994) Understanding long-range correlations in DNA‐sequences. Physica D 75:392–416

    Article  MATH  Google Scholar 

  52. Stanley HE, Buldyrev SV, Goldberger AL, Havlin S, Ossadnik SM, Peng C-K, Simons M (1993) Fractal landscapes in biological systems. Fractals 1:283–301

    Article  MATH  Google Scholar 

  53. Li W (1990) Mutual information functions versus correlation‐functions. J Stat Phys 60:823–837

    Article  MATH  Google Scholar 

  54. Li W (1992) Generating non trivial long-range correlations and \({1/f}\) spectra by replication and mutation. Int J Bifurc Chaos 2:137–154

    Article  MATH  Google Scholar 

  55. Azbel' MY (1995) Universality in a DNA statistical structure. Phys Rev Lett 75:168–171

    Article  Google Scholar 

  56. Herzel H, Große I (1995) Measuring correlations in symbol sequences. Physica A 216:518–542

    Google Scholar 

  57. Voss RF (1992) Evolution of long-range fractal correlations and \({1/f}\) noise in DNA base sequences. Phys Rev Lett 68:3805–3808

    Article  Google Scholar 

  58. Voss RF (1994) Long-range fractal correlations in DNA introns and exons. Fractals 2:1–6

    Article  Google Scholar 

  59. Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide sequences. Nature 356:168–170

    Article  Google Scholar 

  60. Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Peng C‑K, Simons M, Stanley HE (1995) Statistical and linguistic features of DNA sequences. Fractals 3:269–284

    Google Scholar 

  61. Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng C‑K, Simons M, Stanley HE (1995) Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics. Phys Rev E 52:2939–2950

    Google Scholar 

  62. Herzel H, Ebeling W, Schmitt A (1994) Entropies of biosequences: The role of repeats. Phys Rev E 50:5061–5071

    Article  Google Scholar 

  63. Li W (1997) The measure of compositional heterogeneity in DNA sequences is related to measures of complexity. Complexity 3:33–37

    Article  Google Scholar 

  64. Borštnik B, Pumpernik D, Lukman D (1993) Analysis of apparent \({1/f^\alpha}\) spectrum in DNA sequences. Europhys Lett 23:389–394

    Google Scholar 

  65. Chatzidimitriou‐Dreismann CA, Larhammar D (1993) Long-range correlations in DNA. Nature 361:212–213

    Google Scholar 

  66. Nee S (1992) Uncorrelated DNA walks. Nature 357:450

    Article  Google Scholar 

  67. Viswanathan GM, Buldyrev SV, Havlin S, Stanley HE (1998) Long-range correlation measures for quantifying patchiness: Deviations from uniform power-law scaling in genomic DNA. Physica A 249:581–586

    Article  Google Scholar 

  68. Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Matsa ME, Peng C-K, Simons M, Stanley HE (1995) Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys Rev E 51:5084–5091

    Article  Google Scholar 

  69. Berthelsen CL, Glazier JA, Raghavachari S (1994) Effective multifractal spectrum of a random walk. Phys Rev E 49:1860–1864

    Article  Google Scholar 

  70. Li W (1997) The study of correlation structures of DNA sequences: A critical review. Comput Chem 21:257–271

    Article  Google Scholar 

  71. Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Simons M, Stanley HE (1993) Finite‐size effects on long-range correlations: Implications for analyzing DNA sequences. Phys Rev E 47:3730–3733

    Article  Google Scholar 

  72. Bernardi G (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241:3–17

    Article  Google Scholar 

  73. Gardiner K (1996) Base composition and gene distribution: Critical patterns in mammalian genome organization. Trends Genet 12:519–524

    Article  Google Scholar 

  74. Li W, Stolovitzky G, Bernaola-Galván P, Oliver JL (1998) Compositional heterogeneity within, and uniformity between, DNA sequences of yeast chromosomes. Genome Res 8:916–928

    Google Scholar 

  75. Karlin S, Brendel V (1993) Patchiness and correlations in DNA sequences. Science 259:677–680

    Article  Google Scholar 

  76. Larhammar D, Chatzidimitriou-Dreismann CA (1993) Biological origins of long-range correlations and compositional variations in DNA. Nucleic Acids Res 21:5167–5170

    Article  Google Scholar 

  77. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  Google Scholar 

  78. Arneodo A, d'Aubenton-Carafa Y, Audit B, Bacry E, Muzy J‑F, Thermes C (1998) Nucleotide composition effects on the long-range correlations in human genes. Eur Phys J B 1:259–263

    Google Scholar 

  79. Vaillant C, Audit B, Arneodo A (2005) Thermodynamics of DNA loops with long-range correlated structural disorder. Phys Rev Lett 95:068101

    Article  Google Scholar 

  80. Vaillant C, Audit B, Thermes C, Arneodo A (2006) Formation and positioning of nucleosomes: effect of sequence‐dependent long-range correlated structural disorder. Eur Phys J E 19:263–277

    Article  Google Scholar 

  81. Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome‐scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  Google Scholar 

  82. Vaillant C, Audit B, Arneodo A (2007) Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys Rev Lett 99:218103

    Article  Google Scholar 

  83. Moukhtar J, Fontaine E, Faivre-Moskalenko C, Arneodo A (2007) Probing persistence in DNA curvature properties with atomic force microscopy. Phys Rev Lett 98:178101

    Article  Google Scholar 

  84. Chargaff E (1951) Structure and function of nucleic acids as cell constituents. Fed Proc 10:654–659

    Google Scholar 

  85. Rudner R, Karkas JD, Chargaff E (1968) Separation of B. subtilis DNA into complementary strands, 3. Direct analysis. Proc Natl Acad Sci USA 60:921–922

    Article  Google Scholar 

  86. Fickett JW, Torney DC, Wolf DR (1992) Base compositional structure of genomes. Genomics 13:1056–1064

    Article  Google Scholar 

  87. Lobry JR (1995) Properties of a general model of DNA evolution under no‐strand‐bias conditions. J Mol Evol 40:326–330

    Article  Google Scholar 

  88. Beletskii A, Grigoriev A, Joyce S, Bhagwat AS (2000) Mutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome. J Mol Biol 300:1057–1065

    Article  Google Scholar 

  89. Francino MP, Ochman H (2001) Deamination as the basis of strand‐asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol 18:1147–1150

    Article  Google Scholar 

  90. Frank AC, Lobry JR (1999) Asymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms. Gene 238:65–77

    Article  Google Scholar 

  91. Freeman JM, Plasterer TN, Smith TF, Mohr SC (1998) Patterns of genome organization in bacteria. Science 279:1827

    Article  Google Scholar 

  92. Mrázek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95:3720–3725

    Google Scholar 

  93. Rocha EP, Danchin A, Viari A (1999) Universal replication biases in bacteria. Mol Microbiol 32:11–16

    Article  Google Scholar 

  94. Tillier ER, Collins RA (2000) The contributions of replication orientation, gene direction, and signal sequences to base‐composition asymmetries in bacterial genomes. J Mol Evol 50:249–257

    Google Scholar 

  95. Green P, Ewing B, Miller W, Thomas PJ, Green ED (2003) Transcription‐associated mutational asymmetry in mammalian evolution. Nat Genet 33:514–517

    Article  Google Scholar 

  96. Touchon M, Nicolay S, Arneodo A, d'Aubenton-Carafa Y, Thermes C (2003) Transcription‐coupled TA and GC strand asymmetries in the human genome. FEBS Lett 555:579–582

    Article  Google Scholar 

  97. Touchon M, Arneodo A, d'Aubenton-Carafa Y, Thermes C (2004) Transcription‐coupled and splicing‐coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978

    Article  Google Scholar 

  98. Brodie of Brodie E-B, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2005) From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett 94:248103

    Article  Google Scholar 

  99. Nicolay S, Argoul F, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2004) Low frequency rhythms in human DNA sequences: A key to the organization of gene location and orientation? Phys Rev Lett 93:108101

    Article  Google Scholar 

  100. Touchon M, Nicolay S, Audit B, Brodie of Brodie E-B, d'Aubenton-Carafa Y, Arneodo A, Thermes C (2005) Replication‐associated strand asymmetries in mammalian genomes: Toward detection of replication origins. Proc Natl Acad Sci USA 102:9836–9841

    Article  Google Scholar 

  101. Huvet M, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Arneodo A, Thermes C (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17:1278–1285

    Article  Google Scholar 

  102. Arneodo A, Bacry E, Jaffard S, Muzy J-F (1997) Oscillating singularities on Cantor sets: A grand‐canonical multifractal formalism. J Stat Phys 87:179–209

    Article  MathSciNet  MATH  Google Scholar 

  103. Arneodo A, Bacry E, Jaffard S, Muzy J-F (1998) Singularity spectrum of multifractal functions involving oscillating singularities. J Fourier Anal Appl 4:159–174

    Article  MathSciNet  MATH  Google Scholar 

  104. Parisi G, Frisch U (1985) Fully developed turbulence and intermittency. In: Ghil M, Benzi R, Parisi G (eds) Turbulence and predictability in geophysical fluid dynamics and climate dynamics. Proc of Int School. North‐Holland, Amsterdam, pp 84–88

    Google Scholar 

  105. Collet P, Lebowitz J, Porzio A (1987) The dimension spectrum of some dynamical systems. J Stat Phys 47:609–644

    Article  MathSciNet  MATH  Google Scholar 

  106. Grassberger P, Badii R, Politi A (1988) Scaling laws for invariant measures on hyperbolic and non hyperbolic attractors. J Stat Phys 51:135–178

    Article  MathSciNet  MATH  Google Scholar 

  107. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: The characterization of strange sets. Phys Rev A 33:1141–1151

    Article  MathSciNet  MATH  Google Scholar 

  108. Paladin G, Vulpiani A (1987) Anomalous scaling laws in multifractal objects. Phys Rep 156:147–225

    Article  MathSciNet  Google Scholar 

  109. Rand D (1989) The singularity spectrum for hyperbolic Cantor sets and attractors. Ergod Th Dyn Syst 9:527–541

    Article  MathSciNet  MATH  Google Scholar 

  110. Argoul F, Arneodo A, Elezgaray J, Grasseau G (1990) Wavelet analysis of the self‐similarity of diffusion‐limited aggregates and electrodeposition clusters. Phys Rev A 41:5537–5560

    Article  MathSciNet  Google Scholar 

  111. Farmer JD, Ott E, Yorke JA (1983) The dimension of chaotic attractors. Physica D 7:153–180

    Article  MathSciNet  Google Scholar 

  112. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  MathSciNet  MATH  Google Scholar 

  113. Bohr T, Tèl T (1988) The thermodynamics of fractals. In: Hao BL (ed) Direction in chaos, vol 2. World Scientific, Singapore, pp 194–237

    Google Scholar 

  114. Audit B, Nicolay S, Huvet M, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2007) DNA replication timing data corroborate in silico human replication origin predictions. Phys Rev Lett 99:248102

    Article  Google Scholar 

  115. Mandelbrot BB, van Ness JW (1968) Fractional Brownian motions, fractal noises and applications. SIAM Rev 10:422–437

    Article  MathSciNet  MATH  Google Scholar 

  116. Arneodo A, Bacry E, Muzy JF (1998) Random cascades on wavelet dyadic trees. J Math Phys 39:4142–4164

    Article  MathSciNet  MATH  Google Scholar 

  117. Benzi R, Biferale L, Crisanti A, Paladin G, Vergassola M, Vulpiani A (1993) A random process for the construction of multiaffine fields. Physica D 65:352–358

    Article  MATH  Google Scholar 

  118. Mandelbrot BB (1974) Intermittent turbulence in self‐similar cascades: Divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358

    Article  MATH  Google Scholar 

  119. Arneodo A, Bacry E, Manneville S, Muzy JF (1998) Analysis of random cascades using space-scale correlation functions. Phys Rev Lett 80:708–711

    Article  Google Scholar 

  120. Castaing B, Dubrulle B (1995) Fully‐developed turbulence – A unifying point-of-view. J Phys II France 5:895–899

    Article  Google Scholar 

  121. Novikov EA (1994) Infinitely divisible distributions in turbulence. Phys Rev E 50:3303–3305

    Article  Google Scholar 

  122. Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360–369

    Article  Google Scholar 

  123. Li WH, Wu CI, Luo CC (1984) Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol 21:58–71

    Article  Google Scholar 

  124. Petrov DA, Hartl DL (1999) Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA 96:1475–1479

    Article  Google Scholar 

  125. Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31:5338–5348

    Article  Google Scholar 

  126. Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640–649

    Article  Google Scholar 

  127. Shioiri C, Takahata N (2001) Skew of mononucleotide frequencies, relative abundance of dinucleotides, and DNA strand asymmetry. J Mol Evol 53:364–376

    Article  Google Scholar 

  128. Svejstrup JQ (2002) Mechanisms of transcription‐coupled DNA repair. Nat Rev Mol Cell Biol 3:21–29

    Article  Google Scholar 

  129. Nicolay S, Brodie of Brodie E-B, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2007) Bifractality of human DNA strand‐asymmetry profiles results from transcription. Phys Rev E 75:032902

    Article  Google Scholar 

  130. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, ichi Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125:301–313

    Article  Google Scholar 

  131. Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol 28:329–342

    Article  Google Scholar 

  132. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  Google Scholar 

  133. Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–394

    Article  Google Scholar 

  134. Fisher D, Méchali M (2003) Vertebrate HoxB gene expression requires DNA replication. EMBO J 22:3737–3748

    Google Scholar 

  135. Gerbi SA, Bielinsky AK (2002) DNA replication and chromatin. Curr Opin Genet Dev 12:243–248

    Article  Google Scholar 

  136. Hyrien O, Méchali M (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J 12:4511–4520

    Google Scholar 

  137. Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome‐wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nat Genet 32:438–442

    Google Scholar 

  138. Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294:96–100

    Article  Google Scholar 

  139. Coverley D, Laskey RA (1994) Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776

    Article  Google Scholar 

  140. Sasaki T, Sawado T, Yamaguchi M, Shinomiya T (1999) Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol 19:547–555

    Google Scholar 

  141. Bogan JA, Natale DA, Depamphilis ML (2000) Initiation of eukaryotic DNA replication: Conservative or liberal? J Cell Physiol 184:139–150

    Article  Google Scholar 

  142. Gilbert DM (2004) In search of the holy replicator. Nat Rev Mol Cell Biol 5:848–855

    Article  Google Scholar 

  143. Demeret C, Vassetzky Y, Méchali M (2001) Chromatin remodeling and DNA replication: From nucleosomes to loop domains. Oncogene 20:3086–3093

    Google Scholar 

  144. McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656

    Article  Google Scholar 

  145. Méchali M (2001) DNA replication origins: From sequence specificity to epigenetics. Nat Rev Genet 2:640–645

    Google Scholar 

  146. Arneodo A, d'Aubenton-Carafa Y, Audit B, Brodie of Brodie E-B, Nicolay S, St-Jean P, Thermes C, Touchon M, Vaillant C (2007) DNA in chromatin: From genome‐wide sequence analysis to the modeling of replication in mammals. Adv Chem Phys 135:203–252

    Article  Google Scholar 

  147. Bulmer M (1991) Strand symmetry of mutation rates in the beta‐globin region. J Mol Evol 33:305–310

    Article  Google Scholar 

  148. Francino MP, Ochman H (2000) Strand symmetry around the beta‐globin origin of replication in primates. Mol Biol Evol 17:416–422

    Article  Google Scholar 

  149. Gierlik A, Kowalczuk M, Mackiewicz P, Dudek MR, Cebrat S (2000) Is there replication‐associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol 202:305–314

    Article  Google Scholar 

  150. Berezney R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108:471–484

    Article  Google Scholar 

  151. Vassilev LT, Burhans WC, DePamphilis ML (1990) Map** an origin of DNA replication at a single‐copy locus in exponentially proliferating mammalian cells. Mol Cell Biol 10:4685–4689

    Google Scholar 

  152. Codlin S, Dalgaard JZ (2003) Complex mechanism of site‐specific DNA replication termination in fission yeast. EMBO J 22:3431–3440

    Article  Google Scholar 

  153. Little RD, Platt TH, Schildkraut CL (1993) Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol 13:6600–6613

    Google Scholar 

  154. Santamaria D, Viguera E, Martinez‐Robles ML, Hyrien O, Hernandez P, Krimer DB, Schvartzman JB (2000) Bi‐directional replication and random termination. Nucleic Acids Res 28:2099–2107

    Google Scholar 

  155. White EJ, Emanuelsson O, Scalzo D, Royce T, Kosak S, Oakeley EJ, Weissman S, Gerstein M, Groudine M, Snyder M, Schübeler D (2004) DNA replication‐timing analysis of human chromosome 22 at high resolution and different developmental states. Proc Natl Acad Sci USA 101:17771–17776

    Google Scholar 

  156. Woodfine K, Beare DM, Ichimura K, Debernardi S, Mungall AJ, Fiegler H, Collins VP, Carter NP, Dunham I (2005) Replication timing of human chromosome 6. Cell Cycle 4:172–176

    Article  Google Scholar 

  157. Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL (2001) Replication dynamics of the yeast genome. Science 294:115–121

    Article  Google Scholar 

  158. Watanabe Y, Fujiyama A, Ichiba Y, Hattori M, Yada T, Sakaki Y, Ikemura T (2002) Chromosome‐wide assessment of replication timing for human chromosomes 11q and 21q: Disease‐related genes in timing‐switch regions. Hum Mol Genet 11:13–21

    Article  Google Scholar 

  159. Costantini M, Clay O, Federico C, Saccone S, Auletta F, Bernardi G (2007) Human chromosomal bands: Nested structure, high‐definition map and molecular basis. Chromosoma 116:29–40

    Article  Google Scholar 

  160. Schmegner C, Hameister H, Vogel W, Assum G (2007) Isochores and replication time zones: A perfect match. Cytogenet Genome Res 116:167–172

    Article  Google Scholar 

  161. Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P (2005) Replication and transcription: sha** the landscape of the genome. Nat Rev Genet 6:669–677

    Article  Google Scholar 

  162. Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566

    Article  Google Scholar 

  163. Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5:299–310

    Google Scholar 

  164. Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6:775–781

    Article  Google Scholar 

  165. MacAlpine DM, Rodriguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18:3094–3105

    Article  Google Scholar 

  166. Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Méchali M (2004) Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6:721–730

    Google Scholar 

  167. DePamphilis ML (2005) Cell cycle dependent regulation of the origin recognition complex. Cell Cycle 4:70–79

    Article  Google Scholar 

  168. Ghosh M, Liu G, Randall G, Bevington J, Leffak M (2004) Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 24:10193–10207

    Article  Google Scholar 

  169. Lin CM, Fu H, Martinovsky M, Bouhassira E, Aladjem MI (2003) Dynamic alterations of replication timing in mammalian cells. Curr Biol 13:1019–1028

    Article  Google Scholar 

  170. Jeon Y, Bekiranov S, Karnani N, Kapranov P, Ghosh S, MacAlpine D, Lee C, Hwang DS, Gingeras TR, Dutta A (2005) Temporal profile of replication of human chromosomes. Proc Natl Acad Sci USA 102:6419–6424

    Article  Google Scholar 

  171. Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033

    Article  Google Scholar 

  172. Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription‐dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506

    Article  Google Scholar 

  173. Rocha EPC, Danchin A (2003) Essentiality, not expressiveness, drives gene‐strand bias in bacteria. Nat Genet 34:377–378

    Article  Google Scholar 

  174. Herrick J, Stanislawski P, Hyrien O, Bensimon A (2000) Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol 300:1133–1142

    Article  Google Scholar 

  175. Zlatanova J, Leuba SH (2003) Chromatin fibers, one-at-a-time. J Mol Biol 331:1–19

    Article  Google Scholar 

  176. Tassius C, Moskalenko C, Minard P, Desmadril M, Elezgaray J, Argoul F (2004) Probing the dynamics of a confined enzyme by surface plasmon resonance. Physica A 342:402–409

    Article  Google Scholar 

  177. Müller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG (2004) Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol 24:9359–9370

    Google Scholar 

Books and Reviews

  1. Fractals

    Google Scholar 

  2. Aharony A, Feder J (eds) (1989) Fractals in Physics, Essays in Honour of BB Mandelbrot. Physica D 38. North-Holland, Amsterdam

    Google Scholar 

  3. Avnir D (ed) (1988) The fractal approach to heterogeneous chemistry: surfaces, colloids, polymers. Wiley, New-York

    Google Scholar 

  4. Barabàsi AL, Stanley HE (1995) Fractals concepts in surface growth. Cambridge University Press, Cambridge

    Google Scholar 

  5. Ben Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Google Scholar 

  6. Bouchaud J-P, Potters M (1997) Théorie des risques financiers. Cambridge University Press, Cambridge

    Google Scholar 

  7. Bunde A, Havlin S (eds) (1991) Fractals and disordered systems. Springer, Berlin

    MATH  Google Scholar 

  8. Bunde A, Havlin S (eds) (1994) Fractals in science. Springer, Berlin

    MATH  Google Scholar 

  9. Bunde A, Kropp J, Schellnhuber HJ (eds) (2002) The science of disasters: Climate disruptions, heart attacks and market crashes. Springer, Berlin

    Google Scholar 

  10. Family F, Meakin P, Sapoval B, Wood R (eds) (1995) Fractal aspects of materials. Material Research Society Symposium Proceedings, vol 367. MRS, Pittsburg

    Google Scholar 

  11. Family F, Vicsek T (1991) Dynamics of fractal surfaces. World Scientific, Singapore

    MATH  Google Scholar 

  12. Feder J (1988) Fractals. Pergamon, New-York

    MATH  Google Scholar 

  13. Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San Francisco

    MATH  Google Scholar 

  15. Mantegna RN, Stanley HE (2000) An introduction to econophysics. Cambridge University Press, Cambridge

    Google Scholar 

  16. Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Peitgen HO, Jürgens H, Saupe D (1992) Chaos and fractals: New frontiers of science. Springer, New York

    Google Scholar 

  18. Peitgen HO, Saupe D (eds) (1987) The science of fractal images. Springer, New-York

    Google Scholar 

  19. Pietronero L, Tosatti E (eds) (1986) Fractals in physics. North‐Holland, Amsterdam

    Google Scholar 

  20. Stanley HE, Osbrowski N (eds) (1986) On growth and form: Fractal and non‐fractal patterns in physics. Martinus Nijhof, Dordrecht

    MATH  Google Scholar 

  21. Stanley HE, Ostrowski N (eds) (1988) Random fluctuations and pattern growth. Kluwer, Dordrecht

    Google Scholar 

  22. Vicsek T (1989) Fractal growth phenomena. World Scientific, Singapore

    Google Scholar 

  23. Vicsek T, Schlesinger M, Matsuchita M (eds) (1994) Fractals in natural science. World Scientific, Singapore

    Google Scholar 

  24. West BJ (1990) Fractal physiology and chaos in medicine. World Scientific, Singapore

    MATH  Google Scholar 

  25. West BJ, Deering W (1994) Fractal physiology for physicists: Levy statistics. Phys Rep 246:1–100

    Article  Google Scholar 

  26. Wilkinson GG, Kanellopoulos J, Megier J (eds) (1995) Fractals in geoscience and remote sensing, image understanding research senes, vol 1. ECSC-EC-EAEC, Brussels

    Google Scholar 

  27. Wavelets

    Google Scholar 

  28. Abry P (1997) Ondelettes et turbulences. Diderot Éditeur, Art et Sciences, Paris

    Google Scholar 

  29. Arneodo A, Argoul F, Bacry E, Elezgaray J, Muzy J-F (1995) Ondelettes, multifractales et turbulences: de l'ADN aux croissances cristallines. Diderot Éditeur, Art et Sciences, Paris

    Google Scholar 

  30. Chui CK (1992) An introduction to wavelets. Academic Press, Boston

    MATH  Google Scholar 

  31. Combes J-M, Grossmann A, Tchamitchian P (eds) (1989) Wavelets. Springer, Berlin

    MATH  Google Scholar 

  32. Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  33. Erlebacher G, Hussaini MY, Jameson LM (eds) (1996) Wavelets: Theory and applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  34. Farge M, Hunt JCR, Vassilicos JC (eds) (1993) Wavelets, fractals and Fourier. Clarendon Press, Oxford

    MATH  Google Scholar 

  35. Flandrin P (1993) Temps-Fréquence. Hermès, Paris

    Google Scholar 

  36. Holschneider M (1996) Wavelets: An analysis tool. Oxford University Press, Oxford

    Google Scholar 

  37. Jaffard S, Meyer Y, Ryan RD (eds) (2001) Wavelets: Tools for science and technology. SIAM, Philadelphia

    MATH  Google Scholar 

  38. Lemarie PG (ed) (1990) Les ondelettes en 1989. Springer, Berlin

    MATH  Google Scholar 

  39. Mallat S (1998) A wavelet tour in signal processing. Academic Press, New-York

    Google Scholar 

  40. Meyer Y (1990) Ondelettes. Herman, Paris

    Google Scholar 

  41. Meyer Y (ed) (1992) Wavelets and applications. Springer, Berlin

    Google Scholar 

  42. Meyer Y, Roques S (eds) (1993) Progress in wavelets analysis and applications. Éditions Frontières, Gif-sur-Yvette

    MATH  Google Scholar 

  43. Ruskai MB, Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, Raphael L (eds) (1992) Wavelets and their applications. Jones and Barlett, Boston

    MATH  Google Scholar 

  44. Silverman BW, Vassilicos JC (eds) (2000) Wavelets: The key to intermittent information? Oxford University Press, Oxford

    Google Scholar 

  45. Torresani B (1998) Analyse continue par ondelettes. Éditions de Physique, Les Ulis

    Google Scholar 

  46. DNA and Chromatin

    Google Scholar 

  47. Alberts B, Watson J (1994) Molecular biology of the cell, 3rd edn. Garland Publishing, New-York

    Google Scholar 

  48. Calladine CR, Drew HR (1999) Understanding DNA. Academic Press, San Diego

    Google Scholar 

  49. Graur D, Li WH (1999) Fundamentals of molecular evolution. Sinauer Associates, Sunderland

    Google Scholar 

  50. Hartl DL, Jones EW (2001) Genetics: Analysis of genes and genomes. Jones and Bartlett, Sudbury

    Google Scholar 

  51. Kolchanov NA, Lim HA (1994) Computer analysis of genetic macromolecules: Structure, function and evolution. World Scientific, Singapore

    Book  Google Scholar 

  52. Kornberg A, Baker TA (1992) DNA Replication. WH Freeman, New-York

    Google Scholar 

  53. Lewin B (1994) Genes V. Oxford University Press, Oxford

    Google Scholar 

  54. Sudbery P (1998) Human molecular genetics. Addison Wesley, Singapore

    Google Scholar 

  55. Van Holde, KE (1988) Chromatin. Springer, New-York

    Google Scholar 

  56. Watson JD, Gilman M, Witkowski J, Zoller M (1992) Recombinant DNA. Freeman, New-York

    Google Scholar 

  57. Wolfe AP (1998) Chromatin structure and function, 3rd edn. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

We thank O. Hyrien, F. Mongelard and C. Moskalenko for interesting discussions. This work was supported by the Action Concertée Incitative Informatique, Mathématiques, Physique en Biologie Moléculaire 2004 under the project “ReplicOr”, the Agence Nationale de la Recherche under the project “HUGOREP” and the program “Emergence” of the Conseil Régional Rhônes-Alpes and by the Programme d'Actions Intégrées Tournesol.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Arneodo, A. et al. (2012). Fractals and Wavelets : What Can We Learn on Transcription and Replication from Wavelet-Based Multifractal Analysis of DNA Sequences ?. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_39

Download citation

Publish with us

Policies and ethics

Navigation