Neurochemical Systems Regulating the Hypothalamo-Pituitary-Adrenocortical Axis

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Control of glucocorticoid secretion is essential for the health and survival of all vertebrate organisms. Hyper- and hypo-secretion of glucocorticoids are associated with disease processes, underlying the importance of maintaining normal daily glucocorticoid rhythms and generating appropriate glucocorticoid responses to stress. This chapter reviews the principle neurochemical mechanisms that operate in the CNS to regulate excitation and inhibition of the hypothalam-pituitary-adrenocortical (HPA) axis. Daily glucocorticoid secretion is controlled by monoamine and GABAergic circuitry, likely relayed through the suprachiasmatic nucleus. Glucocorticoids appear to play a role in circadian inhibition, exerted via the mineralocorticoid receptor. Neurochemical activation of the HPA axis is highly dependent on modality and intensity. Notably, brainstem norepinephrine/epinephrine neurons are selectively involved in HPA axis activation by systemic stressors. Activation of the HPA axis by psychogenic stressors is intensity-dependent, with peptidergic (vasopressin, Orphanin FQ) and glutamatergic systems playing a role in responses to mild, but not intense stressors. Responses to intense psychogenic stressors appear to involve serotonergic and peptidergic systems (e.g., brainstem glucagon-like peptide 1). Inhibition of the HPA axis is accomplished by GABAergic signals and glucocorticoid feedback, the latter of which is controlled by combined actions at glucocorticoid and mineralocorticoid receptors. The neurochemical systems underlying chronic stress-induced changes in HPA function remain to be elucidated. Overall, the data to date identify numerous candidate neurochemical systems capable of modulating HPA axis activity. Selective targeting of these systems may prove useful for treatment of HPA axis-related disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 299.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5,7-DHT:

5,7-dihydroxytryptamine

5-HT:

5-hydroxytryptamine (serotonin)

6-OHDA:

6-hydroxydopamine

ACTH:

adrenocorticotropic hormone

ADM:

adrenomedullin

ANP:

atrial natriuretic peptide

AVP:

arginine vasopressin

BMI:

bicuculline methiodide

CART:

cocaine and amphetamine-regulated transcript

CB1:

cannabinoid receptor 1

CBG:

corticosteroid binding globin

CCK:

cholecystokinin

CGRP:

calcitonin gene-related peptide

CNP:

C-type natriuretic peptide

CNS:

central nervous system

CO:

carbon monoxide

CRH:

corticotropin-releasing hormone

CRH R1:

CRH receptor 1

DHT:

dihydrotestosterone

DYN:

dynorphin

E:

epinephrine

ENK:

enkephalin

ER:

estrogen receptor

GABA:

gamma-aminobutyric acid

GAD:

glutamic acid decarboxylase

GALP:

galanin-like peptide

GLP-1:

glucagon-like petide-1

GR:

glucocorticoid receptor

HA:

histamine

HPA:

hypothalamo-pituitary-adrenocortical axis

i.c.v.:

Intracerebroventricular

i.v.:

Intravenous

IL-1β:

interleukin 1-beta

LC:

locus coeruleus

MCH:

melanin concentrating hormone

MCR:

melanocortin receptor

MR:

mineralocorticoid receptor

MSH:

melanocyte stimulating hormone

N/OFQ:

Nociceptin/orphanin FQ

NE:

norepinephrine

NK:

neurokinin

NMDA:

n-methyl d-aspartate

NO:

nitric oxide

NPB:

neuropeptide B

NPW:

neuropeptide W

NPY:

neuropeptide Y

NTS:

nucleus of the solitary tract

PVN:

paraventricular nucleus

SCN:

suprachiasmatic nucleus

SP:

substance P

VIP:

vasoactive intestinal polypeptide

VNAB:

ventral noradrenergic bundle

References

  • Abercrombie ED, Jacobs BL. 1987. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7(9): 2837–2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abercrombie ED, Keller RW Jr, Zigmond MJ. 1988. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: Pharmacological and behavioral studies. Neuroscience 27(3): 897–904.

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS, Harlan RE. 1990. Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39: 579–604.

    Article  CAS  PubMed  Google Scholar 

  • Akana SF, Dallman MF, Bradbury MJ, Scribner KA, Strack AM, et al. 1992. Feedback and facilitation in the adrenocortical system: Unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 131(1): 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Akana SF, Hanson ES, Horsley CJ, Strack AM, Bhatnagar S, et al. 1996. Clamped corticosterone (B) reveals the effect of endogenous B on both facilitated responsivity to acute restraint and metabolic responses to chronic stress. Stress 1(1): 33–49.

    Article  CAS  PubMed  Google Scholar 

  • Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, et al. 1984. Endogenous opioids: Biology and function. Annu Rev Neurosci 7: 223–255.

    Article  CAS  PubMed  Google Scholar 

  • Al-Barazanji KA, Wilson S, Baker J, Jessop DS, Harbuz MS. 2001. Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J Neuroendocrinol 13(5): 421–424.

    Article  CAS  PubMed  Google Scholar 

  • Albeck DS, McKittrick CR, Blanchard DC, Blanchard RJ, Nikulina J, et al. 1997. Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain. J Neurosci 17(12): 4895–4903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander LD, Sander LD. 1994. Vasoactive intestinal peptide stimulates ACTH and corticosterone release after injection into the PVN. Regul Pept 51(3): 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Alper RH. 1990. Evidence for central and peripheral serotonergic control of corticosterone secretion in the conscious rat. Neuroendocrinology 51(3): 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Alves SE, Lopez V, McEwen BS, Weiland NG. 1998. Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: An immunocytochemical study. Proc Natl Acad Sci USA 95(6): 3281–3286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson SM, Kant GJ, De Souza EB. 1993. Effects of chronic stress on anterior pituitary and brain corticotropin-releasing factor receptors. Pharmacol Biochem Behav 44(4): 755–761.

    Article  CAS  PubMed  Google Scholar 

  • Anisman H, Sklar LS. 1979. Catecholamine depletion in mice upon reexposure to stress: Mediation of the escape deficits produced by inescapable shock. J Comp Physiol Psychol 93(4): 610–625.

    Article  CAS  PubMed  Google Scholar 

  • Antoni FA. 1986. Hypothalamic control of adrenocorticotropin secretion: Advances since the discovery of 41-residue corticotropin-releasing factor. Endocr Rev 7(4): 351–378.

    Article  CAS  PubMed  Google Scholar 

  • Aronsson M, Fuxe K, Dong Y, Agnati LF, Okret S, et al. 1988. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proc Natl Acad Sci USA 85: 9331–9335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arriza JL, Simerly RB, Swanson LW, Evans RM. 1988. Neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1: 887–900.

    Article  CAS  PubMed  Google Scholar 

  • Asaba K, Makino S, Hashimoto K. 1998. Effect of urocortin on ACTH secretion from rat anterior pituitary in vitro and in vivo: Comparison with corticotropin-releasing hormone. Brain Res 806(1): 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Assenmacher I, Szafarczyk A, Alonso G, Ixart G, Barbanel G. 1987. Physiology of neural pathways affecting CRH secretion. Ann NY Acad Sci 512: 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE. 1981a. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1(8): 876–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Bloom FE. 1981b. Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1(8): 887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker JR, Cardinal K, Bober C, Taylor MM, Samson WK. 2003. Neuropeptide W acts in brain to control prolactin, corticosterone, and growth hormone release. Endocrinology 144(7): 2816–2821.

    Article  CAS  PubMed  Google Scholar 

  • Bali B, Kovacs KJ. 2003. GABAergic control of neuropeptide gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. Eur J Neurosci 18(6): 1518–1526.

    Article  PubMed  Google Scholar 

  • Balment RJ, al Barazanji K. 1992. Renal, cardiovascular and endocrine effects of centrally administered galanin in the anaesthetised rat. Regul Pept 38(1): 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Banky Z, Halasz B, Nagy G. 1986. Circadian corticosterone rhythm did not develop in rats seven weeks after destruction with 5,7-dihydroxytryptamine of the serotoninergic nerve terminals in the suprachiasmatic nucleus at the age of 16 days. Brain Res 369(1–2): 119–124.

    Article  CAS  PubMed  Google Scholar 

  • Baran K, Preston E, Wilks D, Cooney GJ, Kraegen EW, et al. 2002. Chronic central melanocortin-4 receptor antagonism and central neuropeptide-Y infusion in rats produce increased adiposity by divergent pathways. Diabetes 51(1): 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Baranowska B, Wolinska-Witort E, Martynska L, Chmielowska M, Baranowska-Bik A. 2004. Effects of cocaine-amphetamine regulated transcript (CART) on hormone release. Regul Pept 122(2): 55–59.

    Article  CAS  PubMed  Google Scholar 

  • Bartanusz V, Muller D, Gaillard RC, Streit P, Vutskits L, et al. 2004. Local gamma-aminobutyric acid and glutamate circuit control of hypophyseotrophic corticotropin-releasing factor neuron activity in the paraventricular nucleus of the hypothalamus. Eur J Neurosci 19(3): 777–782.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Dallman M. 1998. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84(4): 1025–1039.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Sun LM, Raber J, Maren S, Julius D, et al. 2004. Changes in anxiety-related behaviors and hypothalamic-pituitary-adrenal activity in mice lacking the 5-HT-3A receptor. Physiol Behav 81(4): 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Viau V, Chu A, Soriano L, Meijer OC, et al. 2000. A cholecystokinin-mediated pathway to the paraventricular thalamus is recruited in chronically stressed rats and regulates hypothalamic-pituitary-adrenal function. J Neurosci 20(14): 5564–5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittencourt JC, Benoit R, Sawchenko PE. 1991. Distribution and origins of substance P-immunoreactive projections to the paraventricular and supraoptic nuclei: Partial overlap with ascending catecholaminergic projections. J Chem Neuroanat 4(1): 63–78.

    Article  CAS  PubMed  Google Scholar 

  • Bjursell M, Egecioglu E, Gerdin AK, Svensson L, Oscarsson J, et al. 2005. Importance of melanin-concentrating hormone receptor for the acute effects of ghrelin. Biochem Biophys Res Commun 326(4): 759–765.

    Article  CAS  PubMed  Google Scholar 

  • Blakley GG, Pohorecky LA, Benjamin D. 2004. Behavioral and endocrine changes following antisense oligonucleotide-induced reduction in the rat NOP receptor. Psychopharmacology (Berl) 171(4): 421–428.

    Article  CAS  Google Scholar 

  • Blanchard DC, Spencer RL, Weiss SM, Blanchard RJ, McEwen B, et al. 1995. Visible burrow system as a model of chronic social stress: Behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20(2): 117–134.

    Article  CAS  PubMed  Google Scholar 

  • Blasquez C, Jegou S, Friard O, Tonon MC, Fournier A, et al. 1995. Effect of centrally administered neuropeptide Y on hypothalamic and hypophyseal proopiomelanocortin-derived peptides in the rat. Neuroscience 68(1): 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Bluet Pajot MT, Mounier F, di Sciullo A, Schmidt B, Kordon C. 1995. Differential sites of action of 8OHDPAT, a 5HT1A agonist, on ACTH and PRL secretion in the rat. Neuroendocrinology 61(2): 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Bluet-Pajot MT, Presse F, Voko Z, Hoeger C, Mounier F, et al. 1995. Neuropeptide-E-I antagonizes the action of melanin-concentrating hormone on stress-induced release of adrenocorticotropin in the rat. J Neuroendocrinol 7(4): 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Borowsky B, Kuhn CM. 1992. D1 and D2 dopamine receptors stimulate hypothalamo-pituitary-adrenal activity in rats. Neuropharmacology 31(7): 671–678.

    Article  CAS  PubMed  Google Scholar 

  • Borowsky B, Kuhn CM. 1993. GBR12909 stimulates hypothalamo-pituitary-adrenal activity by inhibition of uptake at hypothalamic dopamine neurons. Brain Res 613(2): 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Boudaba C, Szabo K, Tasker JG. 1996. Physiological map** of local inhibitory inputs to the hypothalamic paraventricular nucleus. J Neurosci 16(22): 7151–7160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers G, Cullinan WE, Herman JP. 1998. Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18(15): 5938–5947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, et al. 2005. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci USA 102(2): 473–478.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury MJ, Akana SF, Dallman MF. 1994. Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo-pituitary-adrenal axis during the diurnal trough and the peak: Evidence for a nonadditive effect of combined receptor occupation. Endocrinology 134(3): 1286–1296.

    Article  CAS  PubMed  Google Scholar 

  • Brooks AN, Howe DC, Porter DW, Naylor AM. 1994. Neuropeptide-Y stimulates pituitary-adrenal activity in fetal and adult sheep. J Neuroendocrinol 6(2): 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Fisher LA, Spiess J, Rivier C, Rivier J, Vale W. et al. 1982. Corticotropinreleasing factor: Actions on the sympathetic nervous system and metabolism. Endocrinology 111: 928–931.

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Rivier C, Vale W. 1984. Central nervous system regulation of adrenocorticotropin secretion: Role of somatostatins. Endocrinology 114(5): 1546–1549.

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA. 2003. Hypothalamic-pituitary-adrenal responses to centrally administered orexin-A are suppressed in pregnant rats. J Neuroendocrinol 15(7): 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Buckingham JC. 1982. Secretion of corticotrophin and its hypothalamic releasing factor in response to morphine and opioid peptides. Neuroendocrinology 35(2): 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Buckingham JC. 1986. Stimulation and inhibition of corticotrophin releasing factor secretion by beta endorphin. Neuroendocrinology 42(2): 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Bugajski J. 1999. Social stress adapts signaling pathways involved in stimulation of the hypothalamic-pituitary-adrenal axis. J Physiol Pharmacol 50(3): 367–379.

    CAS  PubMed  Google Scholar 

  • Bugajski J, Gadek-Michalska A, Bugajski AJ. 2002. Involvement of prostaglandins in the nicotine-induced pituitary-adrenocortical response during social stress. J Physiol Pharmacol 53(4 Pt 2): 847–857.

    CAS  PubMed  Google Scholar 

  • Buijs RM, Kalsbeek A, Woude van der TP, van Heerikhuize JJ, Shinn S. 1993. Suprachiasmatic nucleus lesion increases corticosterone secretion. Am J Physiol 264(6 Pt 2): R1186–R1192.

    CAS  PubMed  Google Scholar 

  • Burgess LH, Handa RJ. 1992. Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131(3): 1261–1269.

    Article  CAS  PubMed  Google Scholar 

  • Butterweck V, Winterhoff H, Herkenham M. 2001. St John's wort, hypericin, and imipramine: A comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats. Mol Psychiatry 6(5): 547–564.

    Article  CAS  PubMed  Google Scholar 

  • Cagampang FR, Okamura H, Inouye S. 1994. Circadian rhythms of norepinephrine in the rat suprachiasmatic nucleus. Neurosci Lett 173(1–2): 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Calogero AE, Bernardini R, Margioris AN, Bagdy G, Gallucci WT, et al. 1989a. Effects of serotonergic agonists and antagonists on corticotropin-releasing hormone secretion by explanted rat hypothalami. Peptides 10(1): 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Calogero AE, Kamilaris TC, Gomez MT, Johnson EO, Tartaglia ME, et al. 1989b. The muscarinic cholinergic agonist arecoline stimulates the rat hypothalamic-pituitary-adrenal axis through a centrally-mediated corticotropin-releasing hormone-dependent mechanism. Endocrinology 125(5): 2445–2453.

    Article  CAS  PubMed  Google Scholar 

  • Campeau S, Watson SJ. 1997. Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. J Neuroendocrinol 9(8): 577–588.

    CAS  PubMed  Google Scholar 

  • Campmany L, Pol O, Armario A. 1996. The effects of two chronic intermittent stressors on brain monoamines. Pharmacol Biochem Behav 53(3): 517–523.

    Article  CAS  PubMed  Google Scholar 

  • Cano V, Ezquerra L, Ramos MP, Ruiz-Gayo M. 2003. Characterization of the role of endogenous cholecystokinin on the activity of the paraventricular nucleus of the hypothalamus in rats. Br J Pharmacol 140(5): 964–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW. 1995. Organization of projections from the medial nucleus of the amygdala: A PHAL study in the rat. J Comp Neurol 360(2): 213–245.

    Article  CAS  PubMed  Google Scholar 

  • Canteras NS, Swanson LW. 1992. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324(2): 180–194.

    Article  CAS  PubMed  Google Scholar 

  • Carey MP, Deterd CH, de Koning J, Helmerhorst F, de Kloet ER. 1995. The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the female rat. J Endocrinol 144(2): 311–321.

    Article  CAS  PubMed  Google Scholar 

  • Casolini P, Kabbaj M, Leprat F, Piazza PV, Rouge-Pont F, et al. 1993. Basal and stress-induced corticosterone secretion is decreased by lesion of mesencephalic dopaminergic neurons. Brain Res 622(1–2): 311–314.

    Article  CAS  PubMed  Google Scholar 

  • Cassano WJ Jr, D'Mello AP. 2001. Acute stress-induced facilitation of the hypothalamic-pituitary-adrenal axis: Evidence for the roles of stressor duration and serotonin. Neuroendocrinology 74(3): 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Celotti F, Negri-Cesi P, Poletti A. 1997. Steroid metabolism in the mammalian brain: 5alpha-reduction and aromatization. Brain Res Bull 44(4): 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Cenci MA, Kalen P, Mandel RJ, Bjorklund A. 1992. Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: A microdialysis study in the rat. Brain Res 581(2): 217–228.

    Article  CAS  PubMed  Google Scholar 

  • Chalmers DT, Lovenberg TW, De Souza EB. 1995. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: Comparison with CRF1 receptor mRNA expression. J Neurosci 15(10): 6340–6350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne D, Beaulieu J, Drolet G. 1998. CRFergic innervation of the paraventricular nucleus of the rat hypothalamus: A tract-tracing study. J Neuroendocrinol 10(2): 119–131.

    Article  CAS  PubMed  Google Scholar 

  • Chappell PB, Smith MA, Kilts CD, Bissette G, Ritchie J, et al. 1986. Alterations in corticotropin-releasing factor-like immunoreactivity in discrete brain regions after acute and chronic stress. J Neurosci 6: 2908–2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles CJ, Richards AM, Espiner EA. 1992. Central C-type natriuretic peptide but not atrial natriuretic factor lowers blood pressure and adrenocortical secretion in normal conscious sheep. Endocrinology 131: 1721–1726.

    Article  CAS  PubMed  Google Scholar 

  • Chautard T, Boudouresque F, Guillaume V, Oliver C. 1993. Effect of excitatory amino acid on the hypothalamo-pituitary-adrenal axis in the rat during the stress-hyporesponsive period. Neuroendocrinology 57(1): 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Cheung A, Harvey S, Hall TR, Lam SK, Spencer GS. 1988. Effects of passive immunization with antisomatostatin serum on plasma corticosterone concentrations in young domestic cockerels. J Endocrinol 116(2): 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, Akana SF. 2003. Repeated stress in young and old 5-HT(2C) receptor knockout mice. Physiol Behav 79(2): 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Chowdrey HS, Jessop DS, Lightman SL. 1990. Substance P stimulates arginine vasopressin and inhibits adrenocorticotropin release in vivo in the rat. Neuroendocrinology 52(1): 90–93.

    Article  CAS  PubMed  Google Scholar 

  • Chowdrey HS, Larsen PJ, Harbuz MS, Lightman SL, Jessop DS. 1995. Endogenous substance P inhibits the expression of corticotropin-releasing hormone during a chronic inflammatory stress. Life Sci 57(22): 2021–2029.

    Article  CAS  PubMed  Google Scholar 

  • Chuluyan HE, Saphier D, Rohn WM, Dunn AJ. 1992. Noradrenergic innervation of the hypothalamus participates in adrenocortical responses to interleukin-1. Neuroendocrinology 56(1): 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Chung KK, Martinez M, Herbert J. 1999. Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats. Neuroscience 92(2): 613–625.

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Tononi G. 2004. Locus ceruleus control of state-dependent gene expression. J Neurosci 24(23): 5410–5419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen MR, Cohen RM, Pickar D, Kreger D, McLellan C, et al. 1985. Hormonal effects of high dose naloxone in humans. Neuropeptides 6(4): 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Cole MA, Kalman BA, Pace TW, Topczewski F, Lowrey MJ, et al. 2000. Selective blockade of the mineralocorticoid receptor impairs hypothalamic-pituitary-adrenal axis expression of habituation. J Neuroendocrinol 12(10): 1034–1042.

    Article  CAS  PubMed  Google Scholar 

  • Cole RL, Sawchenko PE. 2002. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 22(3): 959–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coventry TL, Jessop DS, Finn DP, Crabb MD, Kinoshita H, et al. 2001. Endomorphins and activation of the hypothalamo-pituitary-adrenal axis. J Endocrinol 169(1): 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Cragnolini AB, Perello M, Schioth HB, Scimonelli TN. 2004. alpha-MSH and gamma-MSH inhibit IL-1beta induced activation of the hypothalamic-pituitary-adrenal axis through central melanocortin receptors. Regul Pept 122(3): 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Critchlow V, Liebelt RA, Bar-Sela M, Mountcastle W, Lipscomb HS. 1963. Sex difference in resting pituitary-adrenal function in the rat. Am J Physiol 205(5): 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE. 1998. Evidence for a PVN site of action of GABA in the regulatory control of the rat stress axis. Physiologist (Suppl): 41353.

    Google Scholar 

  • Cullinan WE. 2000. GABA(A) receptor subunit expression within hypophysiotropic CRH neurons: A dual hybridization histochemical study. J Comp Neurol 419(3): 344–351.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Helmreich DL, Watson SJ. 1996. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J Comp Neurol 368(1): 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. 1995. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2): 477–505.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Watson SJ. 1993. Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332: 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Wolfe TJ. 2000. Chronic stress regulates levels of mRNA transcripts encoding beta subunits of the GABA(A) receptor in the rat stress axis. Brain Res 887(1): 118–124.

    Article  CAS  PubMed  Google Scholar 

  • Culman J, Itoi K, Unger T. 1995. Hypothalamic tachykinins. Mediators of stress responses? Ann NY Acad Sci 771: 204–218.

    Article  CAS  PubMed  Google Scholar 

  • Cummings S, Seybold V. 1988. Relationship of alpha-1- and alpha-2-adrenergic-binding sites to regions of the paraventricular nucleus of the hypothalamus containing corticotropin-releasing factor and vasopressin neurons. Neuroendocrinology 47(6): 523–532.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE. 1988. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274(1): 60–76.

    Article  PubMed  Google Scholar 

  • Dallman MF, Akana SF, Cascio CS, Darlington DN, Jacobson L, et al. 1987. Regulation of ACTH secretion: Variations on a theme of B. Recent Prog Horm Res 43(113): 113–173.

    CAS  PubMed  Google Scholar 

  • Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, et al. 2003. Chronic stress and obesity: A new view of “comfort food”. Proc Natl Acad Sci USA 100(20): 11696–11701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels WM, Jaffer A, Russell VA, Taljaard JJ. 1993. Alpha 2- and beta-adrenergic stimulation of corticosterone secretion in rats. Neurochem Res 18(2): 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Darlington DN, Miyamoto M, Keil LC, Dallman MF. 1989. Paraventricular stimulation with glutamate elicits bradycardia and pituitary responses. Am J Physiol 256(1 Pt 2): R112–R119.

    CAS  PubMed  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, et al. 1999. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96(2): 748–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dautzenberg F, Hauger RL. 2002. The CRF peptide family and their receptors: Yet more partners discovered. Trends Pharmacol Sci 23: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Day HE, Akil H. 1999. Evidence that cholecystokinin receptors are not involved in the hypothalamic-pituitary-adrenal response to intraperitoneal administration of interleukin-1beta. J Neuroendocrinol 11(7): 561–568.

    Article  CAS  PubMed  Google Scholar 

  • Day HE, Campeau S, Watson SJ Jr, Akil H. 1997. Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat 13(2): 115–139.

    Article  CAS  PubMed  Google Scholar 

  • Day TA, Ferguson AV, Renaud LP. 1985. Noradrenergic afferents facilitate the activity of tuberoinfundibular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 41(1): 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Dayas CV, Buller KM, Crane JW, Xu Y, Day TA. 2001a. Stressor categorization: Acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 14(7): 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  • Dayas CV, Buller KM, Day TA. 2001b. Medullary neurones regulate hypothalamic corticotropin-releasing factor cell responses to an emotional stressor. Neuroscience 105(3): 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Dayas CV, Xu Y, Buller KM, Day TA. 2000. Effects of chronic oestrogen replacement on stress-induced activation of hypothalamic-pituitary-adrenal axis control pathways. J Neuroendocrinol 12(8): 784–794.

    Article  CAS  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. 1998. Brain corticosteroid receptor balance in health and disease. Endocr Rev 19(3): 269–301.

    CAS  PubMed  Google Scholar 

  • Decavel C, Pol VanDen AN. 1990. GABA: A dominant neurotransmitter in the hypothalamus. J Comp Neurol 302: 1019–1037.

    Article  CAS  PubMed  Google Scholar 

  • DeGoeij DC, Binnekade R, Tilders FJ. 1992a. Chronic stress enhances vasopressin but not corticotropin-releasing factor secretion during hypoglycemia. Am J Physiol 263: E394–399.

    CAS  Google Scholar 

  • DeGoeij DC, Jezova D, Tilders FJ. 1992b. Repeated stress enhances vasopressin synthesis in CRF neurons in the paraventricular nucleus. Brain Res 577: 165–168.

    Article  CAS  Google Scholar 

  • De Goeij DC, Kvetnansky R, Whitnall MH, Jezova D, Berkenbosch F, et al. 1991. Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology 53(2): 150–159.

    Article  CAS  PubMed  Google Scholar 

  • Deuschle M, Weber B, Colla M, Muller M, Kniest A, et al. 1998. Mineralocorticoid receptor also modulates basal activity of hypothalamuspituitaryadrenocortical system in humans. Neuroendocrinology 68(5): 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Devine DP, Watson SJ, Akil H. 2001. Nociceptin/orphanin FQ regulates neuroendocrine function of the limbic-hypothalamic-pituitary-adrenal axis. Neuroscience 102(3): 541–553.

    Article  CAS  PubMed  Google Scholar 

  • Dhillo WS, Small CJ, Jethwa PH, Russell SH, Gardiner JV, et al. 2003. Paraventricular nucleus administration of calcitonin gene-related peptide inhibits food intake and stimulates the hypothalamo-pituitary-adrenal axis. Endocrinology 144(4): 1420–1425.

    Article  CAS  PubMed  Google Scholar 

  • Dhillo WS, Small CJ, Seal LJ, Kim MS, Stanley SA, et al. 2002. The hypothalamic melanocortin system stimulates the hypothalamo-pituitary-adrenal axis in vitro and in vivo in male rats. Neuroendocrinology 75(4): 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Di S, Malcher-Lopes R, Halmos KC, Tasker JG. 2003. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: A fast feedback mechanism. J Neurosci 23(12): 4850–4857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Sciullo A, Bluet-Pajot MT, Mounier F, Oliver C, Schmidt B, et al. 1990. Changes in anterior pituitary hormone levels after serotonin 1A receptor stimulation. Endocrinology 127(2): 567–572.

    Article  CAS  PubMed  Google Scholar 

  • Dobrakovova M, Kvetnansky R, Torda T, Murgas K. 1982. Changes of plasma and adrenal catecholamines and corticosterone in stressed rats with septal lesions. Physiol Behav 29: 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Dohanics J, Hoffman GE, Verbalis JG. 1991. Hyponatremia-induced inhibition of magnocellular neurons causes stressor-selective impairment of stimulated adrenocorticotropin secretion in rats. Endocrinology 128(1): 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Donald RA, Redekopp C, Cameron V, Nicholls MG, Bolton J, Livesey J, Espiner EA, River J, Vale W. 1983. The hormonal actions of corticotropin-releasing factor in sheep: Effect of intravenous and intracerebroventricular injection. Endocrinology 113: 866–870.

    Article  CAS  PubMed  Google Scholar 

  • Drouin J, Sun YL, Nemer M. 1989. Glucocorticoid repression of proopiomelanocortin gene transcription. J Steroid Biochem 34: 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Drucker DJ. 1990. Glucagon and the glucagon-like peptides. Pancreas 5(4): 484–488.

    Article  CAS  PubMed  Google Scholar 

  • Edwards CM, Abusnana S, Sunter D, Murphy KG, Ghatei MA, et al. 1999. The effect of the orexins on food intake: Comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J Endocrinol 160(3): R7–R13.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg RM. 1984. Effects of naltrexone on plasma corticosterone in opiate-naive rats: A central action. Life Sci 34(12): 1185–1191.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg RM. 1993. DAMGO stimulates the hypothalamopituitaryadrenal axis through a mu-2 opioid receptor. J Pharmacol Exp Ther 266(2): 985–991.

    CAS  PubMed  Google Scholar 

  • Emmert MH, Herman JP. 1999. Differential forebrain c-fos mRNA induction by ether inhalation and novelty: Evidence for distinctive stress pathways. Brain Res 845(1): 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Endou M, Yanai K, Sakurai E, Fukudo S, Hongo M, et al. 2001. Food-deprived activity stress decreased the activity of the histaminergic neuron system in rats. Brain Res 891(1–2): 32–41.

    Article  CAS  PubMed  Google Scholar 

  • Evans SJ, Murray TF, Moore FL. 2000. Partial purification and biochemical characterization of a membrane glucocorticoid receptor from an amphibian brain. J Steroid Biochem Mol Biol 72(5): 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Faria M, Navarra P, Tsagarakis S, Besser GM, Grossman AB. 1991. Inhibition of CRH-41 release by substance P, but not substance K, from the rat hypothalamus in vitro. Brain Res 538(1): 76–78.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Conforti N, Melamed E. 1987. Paraventricular nucleus serotonin mediates neurally stimulated adrenocortical secretion. Brain Res Bull 18(2): 165–168.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Conforti N, Saphier D. 1990. Adrenal responses and neurotransmitters in posterior hypothalamic deafferentation. Brain Res Bull 25(1): 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Melamed E, Conforti N, Weidenfeld J. 1984. Effect of central serotonin depletion on adrenocortical responses to neural stimuli. Exp Neurol 85(3): 661–666.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Newman ME, Gur E, Weidenfeld J. 1998. Role of serotonin in the amygdala in hypothalamopituitaryadrenocortical responses. Neuroreport 9(9): 2007–2009.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Weidenfeld J. 1995. Posterior hypothalamic deafferentation or 5,7-dihydroxytryptamine inhibit corticotropin-releasing hormone, ACTH and corticosterone responses following photic stimulation. Neurosci Lett 198(2): 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Weidenfeld J. 1997. Hypothalamic mechanisms mediating glutamate effects on the hypothalamo-pituitary-adrenocortical axis. J Neural Transm 104(6–7): 633–642.

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Weidenfeld J. 1998. The excitatory effects of the amygdala on hypothalamo-pituitary-adrenocortical responses are mediated by hypothalamic norepinephrine, serotonin and CRF-41. Brain Res Bull 45(4): 389–393.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez F, Misilmeri MA, Felger JC, Devine DP. 2004. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology 29(1): 59–71.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara C, Cocchi D, Muller EE. 1991. Somatostatin in the hippocampus mediates dexamethasone-induced suppression of corticosterone secretion in the rat. Neuroendocrinology 53(4): 428–431.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP. 2003. Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144(12): 5249–5258.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo HF, Dolgas CM, Herman JP. 2002. Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology 143(7): 2534–2540.

    Article  CAS  PubMed  Google Scholar 

  • Fink G, Dow RC, Casley D, Johnston CI, Lim AT, et al. 1991. Atrial natriuretic peptide is a physiological inhibitor of ACTH release: Evidence from immunoneutralization in vivo. J Endocrinol 131(3): R9–R12.

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons JT. 1998. Angiotensin, thirst, and sodium appetite. Physiol Rev 78(3): 583–686.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Matta SG, Valentine JD, Sharp BM. 1997. Adrenocorticotropin response and nicotine-induced norepinephrine secretion in the rat paraventricular nucleus are mediated through brainstem receptors. Endocrinology 138(5): 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Flugge G. 1995. Modulation of binding sites for corticotropin-releasing hormone by chronic psychosocial stress. Psychoneuroendocrinology 20(1): 33–51.

    Article  CAS  PubMed  Google Scholar 

  • Fuller PJ, Lim-Tio SS, Brennan FE. 2000. Specificity in mineralocorticoid versus glucocorticoid action. Kidney Int 57(4): 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  • Fuller RW. 1992. The involvement of serotonin in regulation of pituitary-adrenocortical function. Front Neuroendocrinol 13(3): 250–270.

    CAS  PubMed  Google Scholar 

  • Fuller RW, Perry KW, Hemrick-Luecke SK, Engleman E. 1996. Serum corticosterone increases reflect enhanced uptake inhibitor-induced elevation of extracellular 5-hydroxytryptamine in rat hypothalamus. J Pharm Pharmacol 48(1): 68–70.

    Article  CAS  PubMed  Google Scholar 

  • Fuller RW, Snoddy HD. 1977. Elevation of plasma corticosterone by swim stress and insulin-induced hypoglycemia in control and fluoxetine-pretreated rats. Endocr Res Commun 4(1): 11–23.

    Article  CAS  PubMed  Google Scholar 

  • Fuller RW, Snoddy HD. 1990. Serotonin receptor subtypes involved in the elevation of serum corticosterone concentration in rats by direct- and indirect-acting serotonin agonists. Neuroendocrinology 52(2): 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S. 1997. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol 339(2–3): 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64(Suppl 247): 37–85.

    Article  Google Scholar 

  • Gadek-Michalska A, Bugajski J. 1996. Stimulatory effect of intracerebroventricular met- and leu-enkephalin on corticosterone secretion in rats. Folia Med Cracov 37(3–4): 3–12.

    CAS  PubMed  Google Scholar 

  • Gadek-Michalska A, Bugajski J. 2003. Repeated handling, restraint, or chronic crowding impair the hypothalamic-pituitary-adrenocortical response to acute restraint stress. J Physiol Pharmacol 54(3): 449–459.

    CAS  PubMed  Google Scholar 

  • Gadek-Michalska A, Cetera B, Bugajski J. 1997. Corticosterone response induced by intracerebroventricular administration of met-enkephalin and naloxone in rats under stress. Folia Med Cracov 38(3–4): 17–26.

    CAS  PubMed  Google Scholar 

  • Gaillet S, Alonso G, Le Borgne R, Barbanel G, Malaval F, et al. 1993. Effects of discrete lesions in the ventral noradrenergic ascending bundle on the corticotropic stress response depend on the site of the lesion and on the plasma levels of adrenal steroids. Neuroendocrinology 58(4): 408–419.

    Article  CAS  PubMed  Google Scholar 

  • Gaillet S, Lachuer J, Malaval F, Assenmacher I, Szafarczyk A. 1991. The involvement of noradrenergic ascending pathways in the stress-induced activation of ACTH and corticosterone secretions is dependent on the nature of stressors. Exp Brain Res 87(1): 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Gardi J, Biro E, Vecsernyes M, Julesz J, Nyari T, et al. 1997. The effects of brain and C-type natriuretic peptides on corticotropin-releasing factor in brain of rats. Life Sci 60(23): 2111–2117.

    Article  CAS  PubMed  Google Scholar 

  • Gibson A, Ginsburg M, Hall M, Hart SL. 1979. The effect of intracerebroventricular administration of methionine-enkephalin on the stress-induced secretion of corticosterone in mice. Br J Pharmacol 66(2): 164–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson A, Hart SL, Patel S. 1986. Effects of 6-hydroxydopamine-induced lesions of the paraventricular nucleus, and of prazosin, on the corticosterone response to restraint in rats. Neuropharmacology 25(3): 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Gibson A, Hart SL, Shabib A. 1980. Leucine-enkephalin and methionine-enkephalin produce opposing effects on plasma corticosterone levels in ether-stressed mice. Br J Pharmacol 70(4): 509–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert F, Brazell C, Tricklebank MD, Stahl SM. 1988. Activation of the 5-HT1A receptor subtype increases rat plasma ACTH concentration. Eur J Pharmacol 147(3): 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Gomez F, Lahmame A, de Kloet ER, Armario A. 1996. Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: Differential responses are mainly located at the adrenocortical level. Neuroendocrinology 63(4): 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Gottlicher M, Heck S, Herrlich P. 1998. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J Mol Med 76(7): 480–489.

    Article  CAS  PubMed  Google Scholar 

  • Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. 1997. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 17(3): 273–274.

    Article  CAS  PubMed  Google Scholar 

  • Grant SJ, Aston-Jones G, Redmond DE Jr. 1988. Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res Bull 21(3): 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Gresch PJ, Sved AF, Zigmond MJ, Finlay JM. 1994. Stress-induced sensitization of dopamine and norepinephrine efflux in medial prefrontal cortex of the rat. J Neurochem 63(2): 575–583.

    Article  CAS  PubMed  Google Scholar 

  • Grippo AJ, Moffitt JA, Johnson AK. 2002. Cardiovascular alterations and autonomic imbalance in an experimental model of depression. Am J Physiol Regul Integr Comp Physiol 282(5): R1333–R1341.

    Article  CAS  PubMed  Google Scholar 

  • Grippo AJ, Sullivan NR, Damjanoska KJ, Crane JW, Carrasco GA, et al. 2004. Chronic mild stress induces behavioral and physiological changes, and may alter serotonin 1A receptor function, in male and cycling female rats. Psychopharmacology (Berl) 179(4): 769–780.

    Article  CAS  Google Scholar 

  • Groenink L, Mos J, Gugten Van der J, Olivier B. 1996. The 5-HT1A receptor is not involved in emotional stress-induced rises in stress hormones. Pharmacol Biochem Behav 55(2): 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Gross C, Santarelli L, Brunner D, Zhuang X, Hen R. 2000. Altered fear circuits in 5-HT(1A) receptor KO mice. Biol Psychiatry 48(12): 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  • Grossman A, Gaillard RC, McCartney P, Rees LH, Besser GM. 1982. Opiate modulation of the pituitaryadrenal axis: Effects of stress and circadian rhythm. Clin Endocrinol (Oxf) 17(3): 279–286.

    Article  CAS  Google Scholar 

  • Gudelsky GA, Berry SA, Meltzer HY. 1989. Neurotensin activates tuberoinfundibular dopamine neurons and increases serum corticosterone concentrations in the rat. Neuroendocrinology 49(6): 604–609.

    Article  CAS  PubMed  Google Scholar 

  • Gunion MW, Rosenthal MJ, Morley JE, Miller S, Zib B, et al. 1991. mu-receptor mediates elevated glucose and corticosterone after third ventricle injection of opioid peptides. Am J Physiol 261(1 Pt 2): R70–R81.

    CAS  PubMed  Google Scholar 

  • Haas DA, George SR. 1987. Neuropeptide Y administration acutely increases hypothalamic corticotropin-releasing factor immunoreactivity: Lack of effect in other rat brain regions. Life Sci 41(25): 2725–2731.

    Article  CAS  PubMed  Google Scholar 

  • Haas DA, George SR. 1988. Gonadal regulation of corticotropin-releasing factor immunoreactivity in hypothalamus. Brain Res Bull 20(3): 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, et al. 1999. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96(19): 10911–10916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haleem DJ, Kennett GA, Whitton PS, Curzon G. 1989. 8-OH-DPAT increases corticosterone but not other 5-HT1A receptor-dependent responses more in females. Eur J Pharmacol 164(3): 435–443.

    Article  CAS  PubMed  Google Scholar 

  • Han F, Ozawa H, Matsuda K, Nishi M, Kawata M. 2005. Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci Res 51(4): 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Handa RJ, Nunley KM, Lorens SA, Louie JP, McGivern RF, et al. 1994. Androgen regulation of adrenocorticotropin and corticosterone secretion in the male rat following novelty and foot shock stressors. Physiol Behav 55(1): 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Hanson ES, Dallman MF. 1995. Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamopituitaryadrenal axis. J Neuroendocrinol 7(4): 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Haracz JL, Bloom AS, Wang RI, Tseng LF. 1981. Effect of intraventricular beta-endorphin and morphine on hypothalamic-pituitary-adrenal activity and the release of pituitary beta-endorphin. Neuroendocrinology 33(3): 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Harfstrand A, Eneroth P, Agnati L, Fuxe K. 1987. Further studies on the effects of central administration of neuropeptide Y on neuroendocrine function in the male rat: Relationship to hypothalamic catecholamines. Regul Pept 17(3): 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Harris RB, Zhou J, Shi M, Redmann S, Mynatt RL, et al. 2001. Overexpression of agouti protein and stress responsiveness in mice. Physiol Behav 73(4): 599–608.

    Article  CAS  PubMed  Google Scholar 

  • Hayward JN. 1975. Neural control of the posterior pituitary. Annu Rev Physiol 37: 191–210.

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs SC, Richard D. 1999. The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 33(5): 350–359.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP. 1993. Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell Mol Neurobiol 13: 349–372.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Adams D, Prewitt CM. 1995. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61: 180–190.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE. 1997. Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2): 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE, Watson SJ. 1994. Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, et al. 2003. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3): 151–180.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, McCreary BJ, Bettenhausen K, Ziegler DR. 2002. Neurocircuit activation of the hypothalamo-pituitary-adrenocortical axis: Roles for ascending norepinephrine systems. McCarty R, Aguilera G, Sabban E, Kvetnansky R, (eds) Stress: Neural, endocrine and molecular studies. Taylor and Francis; London and New York: pp. 19–24.

    Google Scholar 

  • Herman JP, Patel PD, Akil H, Watson SJ. 1989. Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 3(11): 1886–1894.

    Article  CAS  PubMed  Google Scholar 

  • Hernando F, Fuentes JA, Ruiz-Gayo M. 1996. Impairment of stress adaptive behaviours in rats by the CCKA receptor antagonist, devazepide. Br J Pharmacol 118(2): 400–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hervieu G. 2003. Melanin-concentrating hormone functions in the nervous system: Food intake and stress. Expert Opin Ther Targets 7(4): 495–511.

    Article  CAS  PubMed  Google Scholar 

  • Hillhouse EW, Burden J, Jones MT. 1975. The effect of various putative neurotransmitters on the release of corticotrophin releasing hormone from the hypothalamus of the rat in vitro. I. The effect of acetylcholine and noradrenaline. Neuroendocrinology 17(1): 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hohmann JG, Krasnow SM, Teklemichael DN, Clifton DK, Wynick D, et al. 2003. Neuroendocrine profiles in galanin-overexpressing and knockout mice. Neuroendocrinology 77(6): 354–366.

    Article  CAS  PubMed  Google Scholar 

  • Hokfelt T, Millhorn D, Seroogy K, Tsuruo Y, Ceccatelli S, et al. 1987. Coexistence of peptides with classical transmitters. Experientia 43: 768–780.

    Article  CAS  PubMed  Google Scholar 

  • Holmes MC, Antoni FA, Aguilera G, Catt KJ. 1986. Magnocellular axons in passage through the median eminence release vasopressin. Nature 319: 326–329.

    Article  CAS  PubMed  Google Scholar 

  • Hooi SC, Maiter DM, Martin JB, Koenig JI. 1990. Galaninergic mechanisms are involved in the regulation of corticotropin and thyrotropin secretion in the rat. Endocrinology 127(5): 2281–2289.

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M. 2001. Minireview: Ghrelin and the regulation of energy balance – a hypothalamic perspective. Endocrinology 142(10): 4163–4169.

    Article  CAS  PubMed  Google Scholar 

  • Hrabovszky E, Kallo I, Hajszan T, Shughrue PJ, Merchenthaler I, et al. 1998. Expression of estrogen receptor-beta messenger ribonucleic acid in oxytocin and vasopressin neurons of the rat supraoptic and paraventricular nuclei. Endocrinology 139(5): 2600–2604.

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Hsueh AJ. 2001. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 7(5): 605–611.

    Article  CAS  PubMed  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1): 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Ibanez-Santos J, Tsagarakis S, Rees LH, Besser GM, Grossman A. 1990. Atrial natriuretic peptides inhibit the release of corticotrophin-releasing factor-41 from the rat hypothalamus in vitro. J Endocrinol 126(2): 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M, et al. 2000. Possible involvement of orexin in the stress reaction in rats. Biochem Biophys Res Commun 270(1): 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S, Goeders NE. 1998. Microinjections of dopamine agonists and cocaine elevate plasma corticosterone: Dissociation effects among the ventral and dorsal striatum and medial prefrontal cortex. Brain Res 814(1–2): 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Imaki T, Katsumata H, Miyata M, Naruse M, Imaki J, et al. 2001. Expression of corticotropin-releasing hormone type 1 receptor in paraventricular nucleus after acute stress. Neuroendocrinology 73(5): 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Imaki T, Nahan JL, Rivier C, Sawchenko PE, Vale W. 1991. Differential regulation of corticotropin-releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci 11(3): 585–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaki T, Naruse M, Harada S, Chikada N, Imaki J, et al. 1996. Corticotropin-releasing factor up-regulates its own receptor mRNA in the paraventricular nucleus of the hypothalamus. Brain Res Mol Brain Res 38(1): 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Imaki T, Wang XQ, Shibasaki T, Harada S, Chikada N, et al. 1995. Chlordiazepoxide attenuates stress-induced activation of neurons, corticotropin-releasing factor (CRF) gene transcription and CRF biosynthesis in the paraventricular nucleus (PVN). Brain Res Mol Brain Res 32(2): 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Inui A, Okita M, Sakatani N, Oya M, et al. 1989. Effect of neuropeptide Y on the hypothalamic-pituitary-adrenal axis in the dog. Life Sci 44(15): 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  • Inui A, Inoue T, Nakajima M, Okita M, Sakatani N, et al. 1990. Brain neuropeptide Y in the control of adrenocorticotropic hormone secretion in the dog. Brain Res 510(2): 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Irwin J, Ahluwalia P, Anisman H. 1986. Sensitization of norepinephrine activity following acute and chronic footshock. Brain Res 379(1): 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Isgor C, Shieh KR, Akil H, Watson SJ. 2003. Colocalization of estrogen beta-receptor messenger RNA with orphanin FQ, vasopressin and oxytocin in the rat hypothalamic paraventricular and supraoptic nuclei. Anat Embryol (Berl) 206(6): 461–469.

    Article  CAS  Google Scholar 

  • Ito C, Shen H, Toyota H, Kubota Y, Sakurai E, et al. 1999. Effects of the acute and chronic restraint stresses on the central histaminergic neuron system of Fischer rat. Neurosci Lett 262(2): 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Itoi K, Helmreich DL, Lopez-Figueroa MO, Watson SJ. 1999. Differential regulation of corticotropin-releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. J Neurosci 19(13): 5464–5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itowi N, Yamatodani A, Cacabelos R, Goto M, Wada H. 1989. Effect of histamine depletion on circadian variations of corticotropin and corticosterone in rats. Neuroendocrinology 50(2): 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Iyengar S, Kim HS, Wood PL. 1986. Kappa opiate agonists modulate the hypothalamic-pituitary-adrenocortical axis in the rat. J Pharmacol Exp Ther 238(2): 429–436.

    CAS  PubMed  Google Scholar 

  • Iyengar S, Kim HS, Wood PL. 1987. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: Subchronic tolerance studies of endogenous opioid peptides. Brain Res 435(1–2): 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson L, Sapolsky RM. 1991. The role of the hippocampus in feedback regulation of the hypothalamo-pituitary-adrenocortical axis. Endocrine Rev 12: 118–134.

    Article  CAS  Google Scholar 

  • Jaszberenyi M, Bujdoso E, Pataki I, Telegdy G. 2000. Effects of orexins on the hypothalamic-pituitary-adrenal system. J Neuroendocrinol 12(12): 1174–1178.

    Article  CAS  PubMed  Google Scholar 

  • Jedema HP, Grace AA. 2003. Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro. Neuropsychopharmacology 28(1): 63–72.

    Article  PubMed  Google Scholar 

  • Jedema HP, Sved AF, Zigmond MJ, Finlay JM. 1999. Sensitization of norepinephrine release in medial prefrontal cortex: Effect of different chronic stress protocols. Brain Res 830(2): 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Jessop DS, Renshaw D, Larsen PJ, Chowdrey HS, Harbuz MS. 2000. Substance P is involved in terminating the hypothalamo-pituitary-adrenal axis response to acute stress through centrally located neurokinin-1 receptors. Stress 3(3): 209–220.

    Article  CAS  PubMed  Google Scholar 

  • Jezova D, Bartanusz V, Westergren I, Johansson BB, Rivier J, et al. 1992. Rat melanin-concentrating hormone stimulates adrenocorticotropin secretion: Evidence for a site of action in brain regions protected by the blood-brain barrier. Endocrinology 130(2): 1024–1029.

    CAS  PubMed  Google Scholar 

  • Jezova D, Tokarev D, Rusnak M. 1995. Endogenous excitatory amino acids are involved in stress-induced adrenocorticotropin and catecholamine release. Neuroendocrinology 62(4): 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Jhanwar-Uniyal M, Roland CR, Leibowitz SF. 1986. Diurnal rhythm of alpha 2-noradrenergic receptors in the paraventricular nucleus and other brain areas: Relation to circulating corticosterone and feeding behavior. Life Sci 38(5): 473–482.

    Article  CAS  PubMed  Google Scholar 

  • Ji SM, Wang ZM, Li XP, He RR. 2004. Intracerebroventricular administration of adrenomedullin increases the expression of c-fos and activates nitric oxide-producing neurons in rat cardiovascular related brain nuclei. Sheng Li Xue Bao 56(3): 328–334.

    CAS  PubMed  Google Scholar 

  • Joels M, Verkuyl JM, Van Riel E. 2003. Hippocampal and hypothalamic function after chronic stress. Ann NY Acad Sci 1007: 367–378.

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Kelly G, Chamberlain M. 2001. Changes in rat serum corticosterone after treatment with metabotropic glutamate receptor agonists or antagonists. J Neuroendocrinol 13(8): 670–677.

    Article  CAS  PubMed  Google Scholar 

  • Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, et al. 2001. Effects of centrally administered orexin-B and orexin-A: A role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl) 153(2): 210–218.

    Article  CAS  Google Scholar 

  • Jones MT, Hillhouse EW, Burden J. 1976. Effect on various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro-a model of the neurotransmitters involved. J Endocrinol 69(1): 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H, Knigge U, Kjaer A, Moller M, Warberg J. 2002. Serotonergic stimulation of corticotropin-releasing hormone and pro-opiomelanocortin gene expression. J Neuroendocrinol 14(10): 788–795.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H, Knigge U, Kjaer A, Vadsholt T, Warberg J. 1998. Serotonergic involvement in stress-induced ACTH release. Brain Res 811(1–2): 10–20.

    Article  CAS  PubMed  Google Scholar 

  • Judd LL, Janowsky DS, Zettner A, Huey LY, Takahashi KI. 1981. Effects of naloxone-HCl on cortisol levels in patients with affective disorder and normal controls. Psychiatry Res 4(3): 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Kalin NH, Shelton SE, Kraemer GW, McKinney WT. 1983. Corticotropin-releasing factor administered intraventricularly to rhesus monkeys. Peptides 4: 217–220.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Buijs RM, van Heerikhuize JJ, Arts M, Woude van der TP. 1992. Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res 580(1–2): 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Vliet van der J, Buijs RM. 1996a. Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: A reverse microdialysis study. J Neuroendocrinol 8(4): 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM. 1996b. A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16(17): 5555–5565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneta T, Kusnecov AW. 2005. The role of central corticotropin-releasing hormone in the anorexic and endocrine effects of the bacterial T cell superantigen, Staphylococcal enterotoxin A. Brain Behav Immun 19(2): 138–146.

    Article  CAS  PubMed  Google Scholar 

  • Karkaeva NR, Bazhan NM, Yakovleva TV, Makarova EN. 2005. Function of the hypothalamo-hypophyseal-adrenal system in mice with ectopic hyperproduction of the agouti protein. Neurosci Behav Physiol 35(2): 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Keim KL, Sigg EB. 1976. Physiological and biochemical concomitants of restraint stress in rats. Pharmacol Biochem Behav 4(3): 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Kellendonk C, Gass P, Kretz O, Schutz G, Tronche F. 2002. Corticosteroid receptors in the brain: Gene targeting studies. Brain Res Bull 57(1): 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Keller-Wood M, Dallman MF. 1984. Corticosteroid inhibition of ACTH secretion. Endocrine Rev. 5(1): 1–24.

    Article  CAS  Google Scholar 

  • Kennedy AR, Todd JF, Dhillo WS, Seal LJ, Ghatei MA, et al. 2003. Effect of direct injection of melanin-concentrating hormone into the paraventricular nucleus: Further evidence for a stimulatory role in the adrenal axis via SLC-1. J Neuroendocrinol 15(3): 268–272.

    Article  CAS  PubMed  Google Scholar 

  • Khoshbouei H, Cecchi M, Morilak DA. 2002. Modulatory effects of galanin in the lateral bed nucleus of the stria terminalis on behavioral and neuroendocrine responses to acute stress. Neuropsychopharmacology 27(1): 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Kim CK, Rivier CL. 2000. Nitric oxide and carbon monoxide have a stimulatory role in the hypothalamic-pituitary-adrenal response to physico-emotional stressors in rats. Endocrinology 141(6): 2244–2253.

    Article  CAS  PubMed  Google Scholar 

  • Kinzig KP, D'Alessio DA, Herman JP, Sakai RR, Vahl TP, et al. 2003. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 23(15): 6163–6170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzig KP, D'Alessio DA, Seeley RJ. 2002. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci 22(23): 10470–10476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitay JI. 1961. Sex differences in adrenal cortical secretion in the rat. Endocrinology 68: 818–824.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa S, Shioda S, Nakai Y. 1987. Catecholaminergic innervation of neurons containing corticotropin-releasing factor in the paraventricular nucleus of the rat hypothalamus. Acta Anat (Basel) 129(4): 337–343.

    Article  CAS  Google Scholar 

  • Kjaer A. 1996. Neurohypophysial peptides. Histaminergic regulation and function in adenohypophysial secretion. Dan Med Bull 43(5): 391–406.

    CAS  PubMed  Google Scholar 

  • Kjaer A, Knigge U, Bach FW, Warberg J. 1992a. Histamine- and stress-induced secretion of ACTH and beta-endorphin: Involvement of corticotropin-releasing hormone and vasopressin. Neuroendocrinology 56(3): 419–428.

    Article  CAS  PubMed  Google Scholar 

  • Kjaer A, Knigge U, Bach FW, Warberg J. 1993. Permissive, mediating and potentiating effects of vasopressin in the ACTH and beta-endorphin response to histamine and restraint stress. Neuroendocrinology 58(5): 588–596.

    Article  CAS  PubMed  Google Scholar 

  • Kjaer A, Knigge U, Plotsky PM, BachFW, Warberg J. 1992b. Histamine H1 and H2 receptor activation stimulates ACTH and beta-endorphin secretion by increasing corticotropin-releasing hormone in the hypophyseal portal blood. Neuroendocrinology 56(6): 851–855.

    Article  CAS  PubMed  Google Scholar 

  • Kjaer A, Larsen PJ, Knigge U, Jorgensen H, Warberg J. 1998. Neuronal histamine and expression of corticotropin-releasing hormone, vasopressin and oxytocin in the hypothalamus: Relative importance of H1 and H2 receptors. Eur J Endocrinol 139(2): 238–243.

    Article  CAS  PubMed  Google Scholar 

  • Kjaer A, Larsen PJ, Knigge U, Moller M, Warberg J. 1994. Histamine stimulates c-fos expression in hypothalamic vasopressin-, oxytocin-, and corticotropin-releasing hormone-containing neurons. Endocrinology 134(1): 482–491.

    Article  CAS  PubMed  Google Scholar 

  • Knigge U, Matzen S, Bach FW, Bang P, Warberg J. 1989. Involvement of histaminergic neurons in the stress-induced release of pro-opiomelanocortin-derived peptides in rats. Acta Endocrinol (Copenh) 120(4): 533–539.

    Article  CAS  Google Scholar 

  • Knigge U, Soe-Jensen P, Jorgensen H, Kjaer A, Moller M, et al. 1999. Stress-induced release of anterior pituitary hormones: Effect of H3 receptor-mediated inhibition of histaminergic activity or posterior hypothalamic lesion. Neuroendocrinology 69(1): 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Koenig JI, Gudelsky GA, Meltzer HY. 1987. Stimulation of corticosterone and beta-endorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur J Pharmacol 137(1): 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Korte SM, Bouws GA, Bohus B. 1992. Adrenal hormones in rats before and after stress-experience: Effects of ipsapirone. Physiol Behav 51(6): 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  • Korte SM, Korte-Bouws GA, Bohus B, Koob GF. 1994. Effect of corticotropin-releasing factor antagonist on behavioral and neuroendocrine responses during exposure to defensive burying paradigm in rats. Physiol Behav 56(1): 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Koster A, Montkowski A, Schulz S, Stube EM, Knaudt K, et al. 1999. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci USA 96(18): 10444–10449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs A, Biro E, Szeleczky I, Telegdy G. 1995. Role of endogenous CRF in the mediation of neuroendocrine and behavioral responses to calcitonin gene-related peptide in rats. Neuroendocrinology 62(4): 418–424.

    Article  CAS  PubMed  Google Scholar 

  • Kovacs KJ, Miklos IH, Bali B. 2004. GABAergic mechanisms constraining the activity of the hypothalamo-pituitary-adrenocortical axis. Ann NY Acad Sci 1018: 466–476.

    Article  CAS  PubMed  Google Scholar 

  • Krieger DT, Rizzo F. 1969. Serotonin mediation of circadian periodicity of plasma 17-hydroxycorticosteroids. Am J Physiol 217(6): 1703–1707.

    Article  CAS  PubMed  Google Scholar 

  • Kuru M, Ueta Y, Serino R, Nakazato M, Yamamoto Y, et al. 2000. Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11(9): 1977–1980.

    Article  CAS  PubMed  Google Scholar 

  • Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S. 1998. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: Anatomical evidence of distinct roles of each subtype. J Neurobiol 36(3): 357–378.

    Article  CAS  PubMed  Google Scholar 

  • Lambert PD, Phillips PJ, Wilding JP, Bloom SR, Herbert J. 1995. c-fos expression in the paraventricular nucleus of the hypothalamus following intracerebroventricular infusions of neuropeptide Y. Brain Res 670(1): 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Lanfumey L, Mannoury La Cour C, Froger N, Hamon M. 2000. 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochem Res 25(9–10): 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  • Langub MC Jr, Watson RE Jr, Herman JP. 1995. Distribution of atrial natriuretic peptide and C-type natriuretic peptide precursor mRNAs in the male rat brain. J Comp Neurol 356: 183–199.

    Article  CAS  PubMed  Google Scholar 

  • Larsen PJ, Jessop D, Patel H, Lightman SL, Chowdrey HS. 1993. Substance P inhibits the release of anterior pituitary adrenocorticotrophin via a central mechanism involving corticotrophin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus. J Neuroendocrinol 5(1): 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Jessop DS. 1997. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138(10): 4445–4455.

    Article  CAS  PubMed  Google Scholar 

  • Laugero KD, Gomez F, Manalo S, Dallman MF. 2002. Corticosterone infused intracerebroventricularly inhibits energy storage and stimulates the hypothalamo-pituitary axis in adrenalectomized rats drinking sucrose. Endocrinology 143(12): 4552–4562.

    Article  CAS  PubMed  Google Scholar 

  • Le Mevel JC, Abitbol S, Beraud G, Maniey J. 1979. Temporal changes in plasma adrenocorticotropin concentration after repeated neurotropic stress in male and female rats. Endocrinology 105(3): 812–817.

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz SF, Sladek C, Spencer L, Tempel D. 1988. Neuropeptide Y, epinephrine and norepinephrine in the paraventricular nucleus: Stimulation of feeding and the release of corticosterone, vasopressin and glucose. Brain Res Bull 21(6): 905–912.

    Article  CAS  PubMed  Google Scholar 

  • Levin N, Shinsako J, Dallman MF. 1988. Corticosterone acts on the brain to inhibit adrenalectomy-induced adrenocorticotropin secretion. Endocrinology 122(2): 694–701.

    Article  CAS  PubMed  Google Scholar 

  • Li BH, Xu B, Rowland NE, Kalra SP. 1994a. c-fos expression in the rat brain following central administration of neuropeptide Y and effects of food consumption. Brain Res 665(2): 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Ericsson A, Sawchenko PE. 1996. Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc Natl Acad Sci USA 93(6): 2359–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Brownfield MS, Levy AD, Battaglia G, Cabrera TM, et al. 1994b. Attenuation of hormone responses to the 5-HT1A agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats. Biol Psychiatry 36(5): 300–308.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Holmes A, Ma L, Van de Kar LD, Garcia F, et al. 2004. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: Application of recombinant adenovirus containing 5-HT1A sequences. J Neurosci 24(48): 10868–10877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Rittenhouse PA, Levy AD, Alvarez Sanz MC, Van de Kar LD. 1992. Neuroendocrine responses to the serotonin2 agonist DOI are differentially modified by three 5-HT1A agonists. Neuropharmacology 31(10): 983–989.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wichems CH, Ma L, Van de Kar LD, Garcia F, et al. 2003a. Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84(6): 1256–1265.

    Article  CAS  PubMed  Google Scholar 

  • Li XF, Mitchell JC, Wood S, Coen CW, Lightman SL, et al. 2003b. The effect of oestradiol and progesterone on hypoglycaemic stress-induced suppression of pulsatile luteinizing hormone release and on corticotropin-releasing hormone mRNA expression in the rat. J Neuroendocrinol 15(5): 468–476.

    Article  CAS  PubMed  Google Scholar 

  • Lind RW, Swanson LW, Ganten D. 1984. Angiotensin II immunoreactive pathways in the central nervous system of the rat: Evidence for a projection from the subfornical organ to the paraventricular nucleus of the hypothalamus. Clin Exp Hypertens A 6: 1915–1920.

    CAS  PubMed  Google Scholar 

  • Liposits Z, Phelix C, Paull WK. 1987. Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A light and electron microscopic immunocytochemical study. Histochemistry 86(6): 541–549.

    Article  CAS  PubMed  Google Scholar 

  • Liposits Z, Sherman D, Phelix C, Paull WK. 1986. A combined light and electron microscopic immunocytochemical method for the simultaneous localization of multiple tissue antigens. Tyrosine hydroxylase immunoreactive innervation of corticotropin releasing factor synthesizing neurons in the paraventricular nucleus of the rat. Histochemistry 85(2): 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Lissak K, Vermes I, Telegdy G. 1975. Effect of midbrain raphe lesion on diurnal and stress-induced changes in serotonin content of discrete regions of the limbic system and adrenal function in the rat. Prog Brain Res 42: 327–328.

    Article  CAS  PubMed  Google Scholar 

  • Liu JP, Clarke IJ, Funder JW, Engler D. 1994. Studies of the secretion of corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. II. The central noradrenergic and neuropeptide Y pathways cause immediate and prolonged hypothalamic-pituitary-adrenal activation. Potential involvement in the pseudo-Cushing's syndrome of endogenous depression and anorexia nervosa. J Clin Invest 93(4): 1439–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftis JM, Janowsky A. 2003. The N-methyl-D-aspartate receptor subunit NR2B: Localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97(1): 55–85.

    Article  CAS  PubMed  Google Scholar 

  • Lorens SA, Van de Kar LD. 1987. Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology 45(4): 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Barsh GS, Akil H, Watson SJ. 2003. Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamopituitaryadrenal responses. J Neurosci 23(21): 7863–7872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, et al. 1998. Melanin-concentrating hormone: A functional melanocortin antagonist in the hypothalamus. Am J Physiol 274(4 Pt 1): E627–E633.

    CAS  PubMed  Google Scholar 

  • Ludwig M. 1998. Dendritic release of vasopressin and oxytocin. J Neuroendocrinol 10(12): 881–895.

    Article  CAS  PubMed  Google Scholar 

  • Lunga P, Herbert J. 2004. 17Beta-oestradiol modulates glucocorticoid, neural and behavioural adaptations to repeated restraint stress in female rats. J Neuroendocrinol 16(9): 776–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mac Lusky NJ, Cook S, Scrocchi L, Shin J, Kim J, et al. 2000. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling. Endocrinology 141(2): 752–762.

    Article  CAS  Google Scholar 

  • Makara GB, Stark E. 1974. Effects of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology 16(3–4): 178–190.

    Article  CAS  PubMed  Google Scholar 

  • Makara GB, Stark E. 1975. Effect of intraventricular glutamate on ACTH release. Neuroendocrinology 18(2): 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Gold PW, Schulkin J. 1994a. Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res 640: 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Gold PW, Schulkin J. 1994b. Effects of corticosterone effects on corticotropin-releasing hormone mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Res 657: 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Shibasaki T, Yamauchi N, Nishioka T, Mimoto T, Wakabayashi I, Gold PW, Hashimoto K. 1999. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygadala but not in the hypothalamic paraventricular nucleus in the rat. Brain Res 850: 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Smith MA, Gold PW. 1995. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: Association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 136: 3299–3309.

    Article  CAS  PubMed  Google Scholar 

  • Malendowicz LK, Andreis PG, Nussdorfer GG, Markowska A. 1996. The possible role of endogenous substance P in the modulation of the response of rat pituitaryadrenal axis to stresses. Endocr Res 22(3): 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Mamalaki E, Kvetnansky R, Brady LS, Gold PW, Herkenham M. 1993. Repeated immobilization stress alters tyrosine hydroxylase, corticotropin-releasing hormone and corticosteroid receptor ribonucleic acid levels in rat brain. J Neuroendocrinol 4(6): 689–699.

    Article  Google Scholar 

  • Martini L, Celotti F, Melcangi RC. 1996. Testosterone and progesterone metabolism in the central nervous system: Cellular localization and mechanism of control of the enzymes involved. Cell Mol Neurobiol 16(3): 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Masuzawa M, Oki Y, Ozawa M, Watanabe F, Yoshimi Y. 1999. Corticotropin-releasing factor but not urocortin is involved in adrenalectomy-induced adrenocorticotropin release. J Neuroendocrinol 11: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Matheson GK, Knowles A, Gage D, Michel C, Guthrie D, et al. 1997a. Modification of hypothalamicpituitaryadrenocortical activity by serotonergic agents in the rat. Pharmacology 55(2): 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Matheson GK, Knowles A, Guthrie D, Gage D, Weinzapfel D, et al. 1997b. Actions of serotonergic agents on hypothalamic-pituitary-adrenal axis activity in the rat. Gen Pharmacol 29(5): 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Matta SG, Beyer HS, McAllen KM, Sharp BM. 1987. Nicotine elevates rat plasma ACTH by a central mechanism. J Pharmacol Exp Ther 243(1): 217–226.

    CAS  PubMed  Google Scholar 

  • McCormick CM, Smythe JW, Sharma S, Meaney MJ. 1995. Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Res Dev Brain Res 84(1): 55–61.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Sapolsky RM. 1995. Stress and cognitive function. Curr Opin Neurobiol 5(2): 205–216.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Weiss JM, Schwartz LS. 1968. Selective retention of corticosterone by limbic structures in rat brain. Nature 220(170): 911–912.

    Article  CAS  PubMed  Google Scholar 

  • McGinty JF, Koda LY, Bloom FE. 1983. A combined vascular-catecholamine fluorescence method reveals the relative vascularity of rat locus coeruleus and the paraventricular and supraoptic nuclei of the hypothalamus. Neurosci Lett 36(2): 117–123.

    Article  CAS  PubMed  Google Scholar 

  • McGrath MF, Kuroski de Bold ML, de Bold AJ. 2005. The endocrine function of the heart. Trends Endocrinol Metab 16(10): 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Melander T, Fuxe K, Harfstrand A, Eneroth P, Hokfelt T. 1987. Effects of intraventricular injections of galanin on neuroendocrine functions in the male rat. Possible involvement of hypothalamic catecholamine neuronal systems. Acta Physiol Scand 131(1): 25–32.

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I, Lane M, Shughrue P. 1999. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403(2): 261–280.

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen JD, Hay-Schmidt A, Kiss A. 2004. Serotonergic stimulation of the rat hypothalamo-pituitary-adrenal axis: Interaction between 5-HT1A and 5-HT2A receptors. Ann NY Acad Sci 1018: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Miles PD, Yamatani K, Brown MR, Lickley HL, Vranic M. 1994. Intracerebroventricular administration of somatostatin octapeptide counteracts the hormonal and metabolic responses to stress in normal and diabetic dogs. Metabolism 43(9): 1134–1143.

    Article  CAS  PubMed  Google Scholar 

  • Moldow RL, Beck KD, Weaver S, Servatius RJ. 2005. Blockage of glucocorticoid, but not mineralocorticoid receptors prevents the persistent increase in circulating basal corticosterone concentrations following stress in the rat. Neurosci Lett 374(1): 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Moncek F, Duncko R, Jezova D. 2003. Repeated citalopram treatment but not stress exposure attenuates hypothalamic-pituitary-adrenocortical axis response to acute citalopram injection. Life Sci 72(12): 1353–1365.

    Article  CAS  PubMed  Google Scholar 

  • Monder C, Sakai RR, Miroff Y, Blanchard DC, Blanchard RJ. 1994. Reciprocal changes in plasma corticosterone and testosterone in stressed male rats maintained in a visible burrow system: Evidence for a mediating role of testicular 11 beta-hydroxysteroid dehydrogenase. Endocrinology 134(3): 1193–1198.

    Article  CAS  PubMed  Google Scholar 

  • Morley JE, Baranetsky NG, Wingert TD, Carlson HE, Hershman JM, et al. 1980. Endocrine effects of naloxone-induced opiate receptor blockade. J Clin Endocrinol Metab 50(2): 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Morrow BA, Redmond AJ, Roth RH, Elsworth JD. 2000. The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat. Brain Res 864(1): 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Mozid AM, Tringali G, Forsling ML, Hendricks MS, Ajodha S, et al. 2003. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Horm Metab Res 35(8): 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ. 1984. Physiological functions of glucocorticoids in stress and their relations to pharmacological actions. Endocrine Rev 5: 25–44.

    Article  CAS  Google Scholar 

  • Nahon JL. 1994. The melanin-concentrating hormone: From the peptide to the gene. Crit Rev Neurobiol 8(4): 221–262.

    CAS  PubMed  Google Scholar 

  • Neumann ID, Torner L, Wigger A. 2000a. Brain oxytocin: Differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95(2): 567–575.

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R. 2000b. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: Partial action within the paraventricular nucleus. J Neuroendocrinol 12(3): 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Nicot A, Rowe WB, De Kloet ER, Betancur C, Jessop DS, et al. 1997. Endogenous neurotensin regulates hypothalamic-pituitary-adrenal axis activity and peptidergic neurons in the rat hypothalamic paraventricular nucleus. J Neuroendocrinol 9(4): 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Nijsen MJ, Croiset G, Diamant M, Stam R, Kamphuis PJ, et al. 2000. Endogenous corticotropin-releasing hormone inhibits conditioned-fear-induced vagal activation in the rat. Eur J Pharmacol 389(1): 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Nikolarakis K, Pfeiffer A, Stalla GK, Herz A. 1987. The role of CRF in the release of ACTH by opiate agonists and antagonists in rats. Brain Res 421(1–2): 373–376.

    Article  CAS  PubMed  Google Scholar 

  • Nisenbaum LK, Zigmond MJ, Sved AF, Abercrombie ED. 1991. Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J Neurosci 11(5): 1478–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka T, Anselmo-Franci JA, Li P, Callahan MF, Morris M. 1998. Stress increases oxytocin release within the hypothalamic paraventricular nucleus. Brain Res 781(1–2): 56–60.

    Google Scholar 

  • Ogle TF, Kitay JI. 1977. Ovarian and adrenal steroids during pregnancy and the oestrous cycle in the rat. J Endocrinol 74(1): 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Ohmori N, Itoi K, Tozawa F, Sakai Y, Sakai K, et al. 1995. Effect of acetylcholine on corticotropin-releasing factor gene expression in the hypothalamic paraventricular nucleus of conscious rats. Endocrinology 136(11): 4858–4863.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield BJ, Hou-Yu A, Silverman AJ. 1985. A combined electron microscopic HRP and immunocytochemical study of the limbic projections to rat hypothalamic nuclei containing vasopressin and oxytocin neurons. J Comp Neurol 231(2): 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield BJ, Silverman AJ. 1985. A light microscopic HRP study of limbic projections to the vasopressin-containing nuclear groups of the hypothalamus. Brain Res Bull 14(2): 143–157.

    Article  CAS  PubMed  Google Scholar 

  • Olszewski PK, Grace MK, Billington CJ, Levine AS. 2003. Hypothalamic paraventricular injections of ghrelin: Effect on feeding and c-Fos immunoreactivity. Peptides 24(6): 919–923.

    Article  CAS  PubMed  Google Scholar 

  • Onaka T, Kuramochi M, Saito J, Ueta Y, Yada T. 2005. Galanin-like peptide stimulates vasopressin, oxytocin and adrenocorticotropic hormone release in rats. Neuroreport 16(3): 243–247.

    Article  CAS  PubMed  Google Scholar 

  • Orchinik M, Murray TF, Moore FL. 1991. A corticosteroid receptor in neuronal membranes. Science 252(5014): 1848–1851.

    Article  CAS  PubMed  Google Scholar 

  • Ottenweller JE, Servatius RJ, Tapp WN, Drastal SD, Bergen MT, et al. 1992. A chronic stress state in rats: Effects of repeated stress on basal corticosterone and behavior. Physiol Behav 51(4): 689–698.

    Article  CAS  PubMed  Google Scholar 

  • Owens MJ, Knight DL, Ritchie JC, Nemeroff CB. 1991. The 5-hydroxytryptamine2 agonist, (+)-1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane stimulates the hypothalamic-pituitary-adrenal (HPA) axis. I. Acute effects on HPA axis activity and corticotropin-releasing factor-containing neurons in the rat brain. J Pharmacol Exp Ther 256(2): 787–794.

    CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Kvetnansky R, Kopin IJ, Goldstein DS. 1993. Stress-induced norepinephrine release in the paraventricular nucleus of rats with brainstem hemisections: A microdialysis study. Neuroendocrinology 58(2): 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Makino S, Kopin IJ, Goldstein DS. 1996. Brainstem hemisection decreases corticotropin-releasing hormone mRNA in the paraventricular nucleus but not in the central amygdaloid nucleus. J Neuroendocrinol 8(7): 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Baffi JS, Pacak K. 1999. The role of ascending neuronal pathways in stress-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats. J Neuroendocrinol 11: 529–539.

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Gilbert F. 1992. Activation of 5-HT1A receptor subtype in the paraventricular nuclei of the hypothalamus induces CRH and ACTH release in the rat. Neuroendocrinology 56(6): 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Patchev VK, Almeida OF. 1996. Gonadal steroids exert facilitating and “buffering” effects on glucocorticoid-mediated transcriptional regulation of corticotropin-releasing hormone and corticosteroid receptor genes in rat brain. J Neurosci 16(21): 7077–7084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattij T, Hijzen TH, Groenink L, Oosting RS, van der Gugten J, et al. 2001. Stress-induced hyperthermia in the 5-HT(1A) receptor knockout mouse is normal. Biol Psychiatry 49(7): 569–574.

    Article  CAS  PubMed  Google Scholar 

  • Paulmyer-Lacroix O, Hery M, Pugeat M, Grino M. 1996. The modulatory role of estrogens on corticotropin-releasing factor gene expression in the hypothalamic paraventricular nucleus of ovariectomized rats: Role of the adrenal gland. J Neuroendocrinol 8(7): 515–519.

    Article  CAS  PubMed  Google Scholar 

  • Pechnick R, George R, Poland RE. 1985a. Identification of multiple opiate receptors through neuroendocrine responses. I. Effects of agonists. J Pharmacol Exp Ther 232(1): 163–169.

    CAS  PubMed  Google Scholar 

  • Pechnick R, George R, Poland RE. 1985b. Identification of multiple opiate receptors through neuroendocrine responses. II. Antagonism of mu, kappa and sigma agonists by naloxone and WIN 44,441–3. J Pharmacol Exp Ther 232(1): 170–177.

    CAS  PubMed  Google Scholar 

  • Pechnick RN, George R, Poland RE. 1989. Characterization of the effects of the acute and repeated administration of MK-801 on the release of adrenocorticotropin, corticosterone and prolactin in the rat. Eur J Pharmacol 164(2): 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Pelleymounter M, Joppa M, Foster AC. 2004. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonist urocortin II and urocortin III. Peptides 25: 659–666.

    Article  CAS  PubMed  Google Scholar 

  • Perras B, Schultes B, Behn B, Dodt C, Born J, et al. 2004. Intranasal atrial natriuretic peptide acts as central nervous inhibitor of the hypothalamo-pituitary-adrenal stress system in humans. J Clin Endocrinol Metab 89(9): 4642–4648.

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer A, Herz A, Loriaux DL, Pfeiffer DG. 1985. Central kappa- and mu-opiate receptors mediate ACTH-release in rats. Endocrinology 116(6): 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Pistovcakova J, Makatsori A, Sulcova A, Jezova D. 2005. Felbamate reduces hormone release and locomotor hypoactivity induced by repeated stress of social defeat in mice. Eur Neuropsychopharmacol 15(2): 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Plotsky PM. 1986. Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Regul Pept 16(3–4): 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Plotsky PM. 1987. Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology 121(3): 924–930.

    Article  CAS  PubMed  Google Scholar 

  • Plotsky PM, Bruhn TO, Vale W. 1985. Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology 116(2): 633–639.

    Article  CAS  PubMed  Google Scholar 

  • Plotsky PM, Sutton SW, Bruhn TO, Ferguson AV. 1988. Analysis of the role of angiotensin II in mediation of adrenocorticotropin secretion. Endocrinology 122: 538–545.

    Article  CAS  PubMed  Google Scholar 

  • Potter E, Sutton S, Donaldson C, Chen R, Perrin M, et al. 1994. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci USA 91(19): 8777–8781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prewitt CM, Herman JP. 1997. Hypothalamo-pituitary-adrenocortical regulation following lesions of the central nucleus of the amygdala. Stress 1(4): 263–280.

    Article  CAS  PubMed  Google Scholar 

  • Przegalinski E, Budziszewska B, Warchol-Kania A, Blaszczynska E. 1989. Stimulation of corticosterone secretion by the selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the rat. Pharmacol Biochem Behav 33(2): 329–334.

    Article  CAS  PubMed  Google Scholar 

  • Ratka A, Sutanto W, Bloemers M, de Kloet ER. 1989. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology 50(2): 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Redei E, Li L, Halasz I, McGivern RF, Aird F. 1994. Fast glucocorticoid feedback inhibition of ACTH secretion in the ovariectomized rat: Effect of chronic estrogen and progesterone. Neuroendocrinology 60(2): 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, de Kloet ER. 1985. Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 117(6): 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  • Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, et al. 2001. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 98: 2843–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rho JH, Swanson LW. 1989. A morphometric analysis of functionally defined subpopulations of neurons in the paraventricular nucleus of the rat with observations on the effects of colchicine. J Neurosci 9(4): 1375–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes ME, O'Toole SM, Czambel RK, Rubin RT. 2001. Male-female differences in rat hypothalamic-pituitary-adrenal axis responses to nicotine stimulation. Brain Res Bull 54(6): 681–688.

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS. 1984. Brain part monoamines in the neuroendocrine mechanisms activated by immobilization stress in the rat. Int J Neurosci 23(1): 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L. 1999. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am J Physiol 277(2 Pt 2): R582–R590.

    CAS  PubMed  Google Scholar 

  • Rittenhouse PA, Bakkum EA, Levy AD, Li Q, Carnes M, et al. 1994. Evidence that ACTH secretion is regulated by serotonin2A/2C (5-HT2A/2C) receptors. J Pharmacol Exp Ther 271(3): 1647–1655.

    CAS  PubMed  Google Scholar 

  • Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C. 2003. Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 144(4): 1357–1367.

    Article  CAS  PubMed  Google Scholar 

  • Rivest S. 2001. How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 26(8): 761–788.

    Article  CAS  PubMed  Google Scholar 

  • Rivier C. 2001. Role of gaseous neurotransmitters in the hypothalamic-pituitary-adrenal axis. Ann NY Acad Sci 933: 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Rivier C. 2002. Role of nitric oxide and carbon monoxide in modulating the activity of the rodent hypothalamic-pituitary-adrenal axis. Front Horm Res 29: 15–49.

    Article  CAS  PubMed  Google Scholar 

  • Roche M, Commons KG, Peoples A, Valentino RJ. 2003. Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23(3): 970–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerson FM, Brennan FE, Fuller PJ. 2004. Mineralocorticoid receptor binding, structure and function. Mol Cell Endocrinol 217(1–2): 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Rosmond R, Chagnon M, Bouchard C, Bjorntorp P. 2001. A missense mutation in the human melanocortin-4 receptor gene in relation to abdominal obesity and salivary cortisol. Diabetologia 44(10): 1335–1338.

    Article  CAS  PubMed  Google Scholar 

  • Rowe W, Viau V, Meaney MJ, Quirion R. 1995. Stimulation of CRH-mediated ACTH secretion by central administration of neurotensin: Evidence for the participation of the paraventricular nucleus. J Neuroendocrinol 7(2): 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Rowe WB, Nicot A, Sharma S, Gully D, Walker CD, et al. 1997. Central administration of the neurotensin receptor antagonist, SR48692, modulates diurnal and stress-related hypothalamic-pituitary-adrenal activity. Neuroendocrinology 66(2): 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Gayo M, Garrido MM, Fuentes JA. 2000. Inhibition of the hypothalamic-pituitary-adrenal axis in food-deprived rats by a CCK-A receptor antagonist. Br J Pharmacol 129(5): 839–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell SH, Small CJ, Dakin CL, Abbott CR, Morgan DG, et al. 2001. The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J Neuroendocrinol 13(6): 561–566.

    Article  CAS  PubMed  Google Scholar 

  • Ryan MC, Gundlach AL. 1995. Anatomical localisation of preproatrial natriuretic peptide in the rat brain by in situ hybridization histochemistry: Novel identification in olfactory regions. J Comp Neurol 356: 168–182.

    Article  CAS  PubMed  Google Scholar 

  • Sage D, Maurel D, Bosler O. 2001. Involvement of the suprachiasmatic nucleus in diurnal ACTH and corticosterone responsiveness to stress. Am J Physiol Endocrinol Metab 280(2): E260–E269.

    Article  CAS  PubMed  Google Scholar 

  • Sainsbury A, Rohner-Jeanrenaud F, Cusin I, Zakrzewska KE, Halban PA, et al. 1997. Chronic central neuropeptide Y infusion in normal rats: Status of the hypothalamopituitaryadrenal axis, and vagal mediation of hyperinsulinaemia. Diabetologia 40(11): 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  • Sainsbury A, Rohner-Jeanrenaud F, Grouzmann E, Jeanrenaud B. 1996. Acute intracerebroventricular administration of neuropeptide Y stimulates corticosterone output and feeding but not insulin output in normal rats. Neuroendocrinology 63(4): 318–326.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto F, Yamada S, Ueta Y. 2004. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: Possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept 118(3): 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, Baker JR, Samson CK, Samson HW, Taylor MM. 2004. Central neuropeptide B administration activates stress hormone secretion and stimulates feeding in male rats. J Neuroendocrinol 16(10): 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, Taylor MM, Follwell M, Ferguson AV. 2002. Orexin actions in hypothalamic paraventricular nucleus: Physiological consequences and cellular correlates. Regul Pept 104(1–3): 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Sands SA, Morilak DA. 1999. Expression of alpha1D adrenergic receptor messenger RNA in oxytocin- and corticotropin-releasing hormone-synthesizing neurons in the rat paraventricular nucleus. Neuroscience 91(2): 639–649.

    Article  CAS  PubMed  Google Scholar 

  • Saphier D. 1987. Cortisol alters firing rate and synaptic responses of limbic forebrain units. Brain Res Bull 19(5): 519–524.

    Article  CAS  PubMed  Google Scholar 

  • Saphier D. 1989. Catecholaminergic projections to tuberoinfundibular neurones of the paraventricular nucleus: I. Effects of stimulation of A1, A2, A6 and C2 cell groups. Brain Res Bull 23(6): 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Saphier D, Feldman S. 1989. Catecholaminergic projections to tuberoinfundibular neurones of the paraventricular nucleus: II. Effects of stimulation of the ventral noradrenergic ascending bundle: Evidence for cotransmission. Brain Res Bull 23(6): 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Saphier D, Welch JE, Farrar GE, Nguyen NQ, Aguado F, et al. 1994. Interactions between serotonin, thyrotropin-releasing hormone, and substance P in the CNS regulation of adrenocortical secretion. Psychoneuroendocrinology 19(8): 779–797.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10): 925–935.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Armanini MP, Sutton SW, Plotsky PM. 1989. Elevation of hypophysial portal concentrations of adrenocorticotropin secretagogues after fornix transection. Endocrinology 125(6): 2881–2887.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS. 1984. Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology 114(1): 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Fekete C, Legradi G, Lechan RM. 2003. Glucagon like peptide-1 (7–36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res 985(2): 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Legradi G, Lechan RM. 2002. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res 945(1): 50–59.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Wittmann G, Fekete C, Lechan RM. 2004. Central administration of cocaine- and amphetamine-regulated transcript increases phosphorylation of cAMP response element binding protein in corticotropin-releasing hormone-producing neurons but not in prothyrotropin-releasing hormone-producing neurons in the hypothalamic paraventricular nucleus. Brain Res 999(2): 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Li HY, Ericsson A. 2000. Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Prog Brain Res 122: 61–78.

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW. 1985. Localization, colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain. Fed Proc 44(1 Pt 2): 221–227.

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW, Steinbusch HW, Verhofstad AA. 1983. The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277(2): 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Scaccianoce S, Matrisciano F, Del Bianco P, Caricasole A, Di Giorgi Gerevini V et al. 2003. Endogenous activation of group-II metabotropic glutamate receptors inhibits the hypothalamic-pituitary-adrenocortical axis. Neuropharmacology 44(5): 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini U, Moberg GP, Van Loon GR, De Groot J, Ganong WF. 1971. Relation of brain 5-hydroxytryptamine content to the diurnal variation in plasma corticosterone in the rat. Neuroendocrinology 7(2): 90–96.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SA, Porte D Jr, Seeley RJ, Baskin DG. 2000. Central nervous system control of food intake. Nature 404(6778): 661–671.

    Article  CAS  PubMed  Google Scholar 

  • Seale JV, Wood SA, Atkinson HC, Bate E, Lightman SL, et al. 2004a. Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats. J Neuroendocrinol 16(6): 516–524.

    Article  CAS  PubMed  Google Scholar 

  • Seale JV, Wood SA, Atkinson HC, Harbuz MS, Lightman SL. 2004b. Gonadal steroid replacement reverses gonadectomy-induced changes in the corticosterone pulse profile and stress-induced hypothalamic-pituitary-adrenal axis activity of male and female rats. J Neuroendocrinol 16(12): 989–998.

    Article  CAS  PubMed  Google Scholar 

  • Selye H. 1956. The stress of life. McGraw-Hill; New York: pp. 324.

    Google Scholar 

  • Seo DO, Lee S, Rivier C. 2002. Comparison between the influence of the intravenous and intracerebroventricular injection of a nitric oxide donor on adrenocorticotropic hormone release and hypothalamic neuronal activity. J Neuroendocrinol 14(7): 568–573.

    Article  CAS  PubMed  Google Scholar 

  • Shan J, Krukoff TL. 2001. Intracerebroventricular adrenomedullin stimulates the hypothalamic-pituitary-adrenal axis, the sympathetic nervous system and production of hypothalamic nitric oxide. J Neuroendocrinol 13(11): 975–984.

    Article  CAS  PubMed  Google Scholar 

  • Shiomi H, Watson SJ, Kelsey JE, Akil H. 1986. Pretranslational and posttranslational mechanisms for regulating beta-endorphin-adrenocorticotropin of the anterior pituitary lobe. Endocrinology 119(4): 1793–1799.

    Article  CAS  PubMed  Google Scholar 

  • Shughrue PJ, Lane MV, Merchenthaler I. 1996. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus. Endocrinology 137(11): 5159–5162.

    Article  CAS  PubMed  Google Scholar 

  • Shughrue PJ, Lane MV, Merchenthaler I. 1997. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388(4): 507–525.

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM. 2004. The neurotransmitters of sleep. J Clin Psychiatry 65(Suppl 16): 4–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman AJ, Hou-Yu A, Chen WP. 1989. Corticotropin-releasing factor synapses within the paraventricular nucleus of the hypothalamus. Neuroendocrinology 49(3): 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Smith BK, York DA, Bray GA. 1994. Chronic cerebroventricular galanin does not induce sustained hyperphagia or obesity. Peptides 15(7): 1267–1272.

    Article  CAS  PubMed  Google Scholar 

  • Smith GP, Gibbs J. 1994. Satiating effect of cholecystokinin. Ann NY Acad Sci 713: 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Soe-Jensen P, Knigge U, Garbarg M, Kjaer A, Rouleau A, et al. 1993. Responses of anterior pituitary hormones and hypothalamic histamine to blockade of histamine synthesis and to selective activation or inactivation of presynaptic histamine H3 receptors in stressed rats. Neuroendocrinology 57(3): 532–540.

    Article  CAS  PubMed  Google Scholar 

  • Spencer RL, Kim PJ, Kalman BA, Cole MA. 1998. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology 139(6): 2718–2726.

    Article  CAS  PubMed  Google Scholar 

  • Spencer RL, Miller AH, Moday H, Stein M, McEwen BS. 1993. Diurnal differences in basal and acute stress levels of type I and type II adrenal steroid receptor activation in neural and immune tissues. Endocrinology 133(5): 1941–1950.

    Article  CAS  PubMed  Google Scholar 

  • Spencer SJ, Ebner K, Day TA. 2004. Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic-pituitary-adrenal axis responses to different stressors. Eur J Neurosci 20(4): 1008–1016.

    Article  CAS  PubMed  Google Scholar 

  • Spinedi E, Gaillard RC. 1991. Stimulation of the hypothalamo-pituitary-adrenocortical axis by the central serotonergic pathway: Involvement of endogenous corticotropin-releasing hormone but not vasopressin. J Endocrinol Invest 14(7): 551–557.

    Article  CAS  PubMed  Google Scholar 

  • Stanley BG, Schwartz DH, Hernandez L, Hoebel BG, Leibowitz SF. 1989. Patterns of extracellular norepinephrine in the paraventricular hypothalamus: Relationship to circadian rhythm and deprivation-induced eating behavior. Life Sci 45(4): 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Stanley SA, Small CJ, Murphy KG, Rayes E, Abbott CR, et al. 2001. Actions of cocaine- and amphetamine-regulated transcript (CART) peptide on regulation of appetite and hypothalamo-pituitary axes in vitro and in vivo in male rats. Brain Res 893(1–2): 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Starcevic V, Milosevic V, Brkic B, Severs WB. 2000. Effects of centrally applied somatostatin on pituitary adrenocorticotropes in female rats. Pharmacology 60(4): 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Stout SC, Owens MJ, Nemeroff CB. 2002. Regulation of corticotropin-releasing factor neuronal systems and hypothalamic-pituitary-adrenal axis activity by stress and chronic antidepressant treatment. J Pharmacol Exp Ther 300(3): 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Tozawa F, Iwai I, Sato Y, Sumitomo T, et al. 1993. Neuropeptide Y increases the corticotropin-releasing factor messenger ribonucleic acid level in the rat hypothalamus. Brain Res Mol Brain Res 18(4): 311–315.

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE, Berod A, Hartman BK, Helle KB, et al. 1981. An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196(2): 271–285.

    Article  CAS  PubMed  Google Scholar 

  • Szafarczyk A, Alonso G, Ixart G, Malaval F, Assenmacher I. 1985. Diurnal-stimulated and stress-induced ACTH release in rats is mediated by ventral noradrenergic bundle. Am J Physiol 249(2 Pt 1): E219–E226.

    CAS  PubMed  Google Scholar 

  • Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I. 1987. Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology 121(3): 883–892.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi LK. 2001. Role of CRF(1) and CRF(2) receptors in fear and anxiety. Neurosci Biobehav Rev 25(7–8): 627–636.

    Article  CAS  PubMed  Google Scholar 

  • Tamashiro KL, Nguyen MM, Sakai RR. 2005. Social stress: From rodents to primates. Front Neuroendocrinol 26(1): 27–40.

    Article  PubMed  Google Scholar 

  • Tanaka T, Yokoo H, Mizoguchi K, Yoshida M, Tsuda A, et al. 1991. Noradrenaline release in the rat amygdala is increased by stress: Studies with intracerebral microdialysis. Brain Res 544(1): 174–176.

    Article  CAS  PubMed  Google Scholar 

  • Tanimura SM, Watts AG. 1998. Corticosterone can facilitate as well as inhibit corticotropin-releasing hormone gene expression in the rat hypothalamic paraventricular nucleus. Endocrinology 139(9): 3830–3836.

    Article  CAS  PubMed  Google Scholar 

  • Taylor MM, Yuill EA, Baker JR, Ferri CC, Ferguson AV, et al. 2005. Actions of neuropeptide W in paraventricular hypothalamus: Implications for the control of stress hormone secretion. Am J Physiol Regul Integr Comp Physiol 288(1): R270–R275.

    Article  CAS  PubMed  Google Scholar 

  • Tempel DL, Leibowitz SF. 1990. Galanin inhibits insulin and corticosterone release after injection into the PVN. Brain Res 536(1–2): 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Thierry AM, Javoy F, Glowinski J, Kety SS. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J Pharmacol Exp Ther 163(1): 163–171.

    CAS  PubMed  Google Scholar 

  • Thieulant ML, Duval J. 1985. Differential distribution of androgen and estrogen receptors in rat pituitary cell populations separated by centrifugal elutriation. Endocrinology 116(4): 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  • Tjurmina OA, Armando I, Saavedra JM, Goldstein DS, Murphy DL. 2002. Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143(12): 4520–4526.

    Article  CAS  PubMed  Google Scholar 

  • Tokarev D, Jezova D. 1997. Effect of central administration of the non-NMDA receptor antagonist DNQX on ACTH and corticosterone release before and during immobilization stress. Methods Find Exp Clin Pharmacol 19(5): 323–328.

    CAS  PubMed  Google Scholar 

  • Trapp T, Rupprecht R, Castern M, Reul JHM, Holsboer F. 1994. Heterodimerization between mineralocorticoid and glucocorticoid receptor: A new principle of glucocorticoid action in the CNS. Neuron 13: 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  • Tsagarakis S, Holly JM, Rees LH, Besser GM, Grossman A. 1988. Acetylcholine and norepinephrine stimulate the release of corticotropin-releasing factor-41 from the rat hypothalamus in vitro. Endocrinology 123(4): 1962–1969.

    Article  CAS  PubMed  Google Scholar 

  • Tsagarakis S, Rees LH, Besser GM, Grossman A. 1989. Neuropeptide-Y stimulates CRF-41 release from rat hypothalami in vitro. Brain Res 502(1): 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Tsukamura H, Thompson RC, Tsukahara S, Ohkura S, Maekawa F, et al. 2000. Intracerebroventricular administration of melanin-concentrating hormone suppresses pulsatile luteinizing hormone release in the female rat. J Neuroendocrinol 12(6): 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull A, Vaughan J, Rivier JE, Vale WW, Rivier C. 1999. Urocortin is not a significant regulator of intermittent electrofootshock-induced adrenocorticotropin secretion in the intact male rat. Endocrinology 140: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull AV, Kim CK, Lee S, Rivier CL. 1998. Influence of carbon monoxide, and its interaction with nitric oxide, on the adrenocorticotropin hormone response of the normal rat to a physico-emotional stress. J Neuroendocrinol 10(10): 793–802.

    Article  CAS  PubMed  Google Scholar 

  • Uht RM, McKelvy JF, Harrison RW, Bohn MC. 1988. Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus. J Neurosci Res 19(4): 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Engeland WC. 2002. Adrenal splanchnic innervation modulates adrenal cortical responses to dehydration stress in rats. Neuroendocrinology 76(2): 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Unger T, Carolus S, Demmert G, Ganten D, Lang RE, et al. 1988. Substance P induces a cardiovascular defense reaction in the rat: Pharmacological characterization. Circ Res 63(4): 812–820.

    Article  CAS  PubMed  Google Scholar 

  • Valentino RJ, Van Bockstaele E. 2001. Opposing regulation of the locus coeruleus by corticotropin-releasing factor and opioids. Potential for reciprocal interactions between stress and opioid sensitivity. Psychopharmacology (Berl) 158(4): 331–342.

    Article  CAS  Google Scholar 

  • Vamvakopoulos NC, Chrousos GP. 1993. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J Clin Invest 92(4): 1896–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar Van de LD. 1997. 5-HT receptors involved in the regulation of hormone secretion. Baumgarten HG, Gothert M, (eds) Handbook of experimental pharmacology. Springer-Verlag; Berlin: pp. 537–562.

    Google Scholar 

  • Kar Van de LD, Carnes M, Maslowski RJ, Bonadonna AM, Rittenhouse PA, et al. 1989. Neuroendocrine evidence for denervation supersensitivity of serotonin receptors: Effects of the 5-HT agonist RU 24969 on corticotropin, corticosterone, prolactin and renin secretion. J Pharmacol Exp Ther 251(2): 428–434.

    PubMed  Google Scholar 

  • Pol van den AN. 1982. The magnocellular and parvocellular paraventricular nucleus of rat: Intrinsic organization. J Comp Neurol 206(4): 317–345.

    Article  PubMed  Google Scholar 

  • Van Eekelen JA, De Kloet ER. 1992. Co-localization of brain corticosteroid receptors in the rat hippocampus. Prog Histochem Cytochem 26(1–4): 250–258.

    Article  CAS  PubMed  Google Scholar 

  • van Eekelen JA, Kiss JZ, Westphal HM, De Kloet ER. 1987. Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain. Brain Res 436(1): 120–128.

    Article  CAS  PubMed  Google Scholar 

  • van Haarst AD, Oitzl MS, De Kloet ER. 1997. Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochem Res 22(11): 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  • van Steensel B, van Binnendijk EP, Hornsby CD, van der Voort HT, Krozowski ZS, et al. 1996. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J Cell Sci 109 (Pt 4): 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Venihaki M, Sakihara S, Subramanian S, Dikkes P, Weninger SC, et al. 2004. Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: Modulation by stress and attenuation of some anxiety-like behaviors. J Neuroendocrinol 16: 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Verkuyl JM, Hemby SE, Joels M. 2004. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur J Neurosci 20(6): 1665–1673.

    Article  PubMed  Google Scholar 

  • Vermes I, Telegdy G, Lissak K. 1974. Effect of midbrain raphe lesion on diurnal and stress-induced changes in serotonin content of discrete regions of the limbic system and in adrenal function in the rat. Acta Physiol Acad Sci Hung 45(3–4): 217–224.

    CAS  PubMed  Google Scholar 

  • Vernikos-Danellis J, Berger P, Barchas JD. 1973. Brain serotonin and pituitaryadrenal function. Prog Brain Res 39: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Vetter DE, Li C, Zhao L, Contarino A, Liberman MC, et al. 2002. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat Genet 31(4): 363–369.

    Article  CAS  PubMed  Google Scholar 

  • Viau V. 2002. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol 14(6): 506–513.

    Article  CAS  PubMed  Google Scholar 

  • Viau V, Chu A, Soriano L, Dallman MF. 1999. Independent and overlap** effects of corticosterone and testosterone on corticotropin-releasing hormone and arginine vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus and stress-induced adrenocorticotropic hormone release. J Neurosci 19(15): 6684–6693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viau V, Meaney MJ. 1991. Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 129(5): 2503–2511.

    Article  CAS  PubMed  Google Scholar 

  • Viau V, Meaney MJ. 1996. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J Neurosci 16(5): 1866–1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viau V, Soriano L, Dallman MF. 2001. Androgens alter corticotropin releasing hormone and arginine vasopressin mRNA within forebrain sites known to regulate activity in the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 13(5): 442–452.

    Article  CAS  PubMed  Google Scholar 

  • Vincent SR, Das S, Maines MD. 1994. Brain heme oxygenase isoenzymes and nitric oxide synthase are co-localized in select neurons. Neuroscience 63(1): 223–231.

    Article  CAS  PubMed  Google Scholar 

  • Volavka J, Cho D, Mallya A, Bauman J. 1979. Naloxone increases ACTH and cortisol levels in man. N Engl J Med 300(18): 1056–1057.

    CAS  PubMed  Google Scholar 

  • Von Frijtag JC, Croiset G, Gispen WH, Adan RA, Wiegant VM. 1998. The role of central melanocortin receptors in the activation of the hypothalamus-pituitary-adrenal-axis and the induction of excessive grooming. Br J Pharmacol 123(8): 1503–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrang N, Larsen PJ, Kristensen P, Tang-Christensen M. 2000. Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 141(2): 794–801.

    Article  CAS  PubMed  Google Scholar 

  • Vrang N, Tang-Christensen M, Larsen PJ, Kristensen P. 1999. Recombinant CART peptide induces c-fos expression in central areas involved in control of feeding behaviour. Brain Res 818(2): 499–509.

    Article  CAS  PubMed  Google Scholar 

  • Wahlestedt C, Skagerberg G, Ekman R, Heilig M, Sundler F, et al. 1987. Neuropeptide Y (NPY) in the area of the hypothalamic paraventricular nucleus activates the pituitary-adrenocortical axis in the rat. Brain Res 417(1): 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Su H, Copenhagen LD, Vaishnav S, Pieri F, et al. 2002. Urocortin-deficient mice display normal stress-induced anxiety behavior and autonomic control but an impaired acoustic startle response. Mol Cell Biol 22(18): 6605–6610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XM, Tresham JJ, Coghlan JP, Scoggins BA. 1987. Intracerebroventricular infusion of a cyclic hexapeptide analogue of somatostatin inhibits hemorrhage-induced ACTH release. Neuroendocrinology 45(4): 325–327.

    Article  CAS  PubMed  Google Scholar 

  • Weidenfeld J, Brenner T, Conforti N, Bodoff M, Feldman S. 1988. Differential adrenocortical responses to neural stimuli following intracerebroventricular injection of nicotinic acetylcholine receptor antibodies in rats. Exp Neurol 100(3): 578–582.

    Article  CAS  PubMed  Google Scholar 

  • Weidenfeld J, Feldman S, Mechoulam R. 1994. Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology 59(2): 110–112.

    Article  CAS  PubMed  Google Scholar 

  • Weidenfeld J, Siegel R, Conforti N, Mizrachi R, Brenner T. 1983. Effect of intracerebroventricular injection of nicotinic acetylcholine receptor antibodies on ACTH, corticosterone and prolactin secretion in the male rat. Brain Res 265(1): 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Wenger T, Jamali KA, Juaneda C, Leonardelli J, Tramu G. 1997. Arachidonyl ethanolamide (anandamide) activates the parvocellular part of hypothalamic paraventricular nucleus. Biochem Biophys Res Commun 237(3): 724–728.

    Article  CAS  PubMed  Google Scholar 

  • Whitnall MH. 1989. Stress selectively activates the vasopressin-containing subset of corticotropin-releasing hormone neurons. Neuroendocrinology 50(6): 702–707.

    Article  CAS  PubMed  Google Scholar 

  • Whitnall MH. 1993. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40: 573–629.

    Article  CAS  PubMed  Google Scholar 

  • Wiegant VM, Jolles J, Colbern DL, Zimmermann E, Gispen WH. 1979. Intracerebroventricular ACTH activates the pituitary–adrenal system: Dissociation from a behavioral response. Life Sci 25(21): 1791–1796.

    Article  CAS  PubMed  Google Scholar 

  • Wieronska JM, Branski P, Szewczyk B, Palucha A, Papp M, et al. 2001. Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in the rat hippocampus in an animal model of depression. Pol J Pharmacol 53(6): 659–662.

    CAS  PubMed  Google Scholar 

  • Williams AM, Morilak DA. 1997. alpha1B adrenoceptors in rat paraventricular nucleus overlap with, but do not mediate, the induction of c-fos expression by osmotic or restraint stress. Neuroscience 76(3): 901–913.

    Article  CAS  PubMed  Google Scholar 

  • Williams JH, Miall-Allen VM, Klinowski M, Azmitia EC. 1983. Effects of microinjections of 5,7-dihydroxytryptamine in the suprachiasmatic nuclei of the rat on serotonin reuptake and the circadian variation of corticosterone levels. Neuroendocrinology 36(6): 431–435.

    Article  CAS  PubMed  Google Scholar 

  • Willner P, Muscat R, Papp M. 1992. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci Biobehav Rev 16(4): 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Wimalawansa SJ. 1996. Calcitonin gene-related peptide and its receptors: Molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17(5): 533–585.

    Article  CAS  PubMed  Google Scholar 

  • Woods SC, Seeley RJ, Porte D Jr, Schwartz MW. 1998. Signals that regulate food intake and energy homeostasis. Science 280(5368): 1378–1383.

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Small CJ, Fribbens CV, Neary NM, Ward HL, et al. 2002. The hypothalamic mechanisms of the hypophysiotropic action of ghrelin. Neuroendocrinology 76(5): 316–324.

    Article  CAS  PubMed  Google Scholar 

  • **ao E, **a-Zhang L, Vulliemoz NR, Ferin M, Wardlaw SL. 2003. Agouti-related protein stimulates the hypothalamic-pituitary-adrenal (HPA) axis and enhances the HPA response to interleukin-1 in the primate. Endocrinology 144(5): 1736–1741.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Li BH, Rowland NE, Kalra SP. 1995. Neuropeptide Y injection into the fourth cerebroventricle stimulates c-Fos expression in the paraventricular nucleus and other nuclei in the forebrain: Effect of food consumption. Brain Res 698(1–2): 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Yajima F, Suda T, Tomori N, Sumitomo T, Nakagami Y, et al. 1986. Effects of opioid peptides on immunoreactive corticotropin-releasing factor release from the rat hypothalamus in vitro. Life Sci 39(2): 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi N, Shibasaki T, Wakabayashi I, Demura H. 1997. Brain beta-endorphin and other opioids are involved in restraint stress-induced stimulation of the hypothalamic-pituitary-adrenal axis, the sympathetic nervous system, and the adrenal medulla in the rat. Brain Res 777(1–2): 140–146.

    CAS  PubMed  Google Scholar 

  • Yambe Y, Arima H, Kakiya S, Murase T, Oiso Y. 2002. Diurnal changes in arginine vasopressin gene transcription in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 104(2): 132–136.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Cagampang FR, Nakayama Y, Inouye SI. 1993. Vasoactive intestinal polypeptide precursor mRNA exhibits diurnal variation in the rat suprachiasmatic nuclei. Brain Res Mol Brain Res 20(3): 259–262.

    Article  CAS  PubMed  Google Scholar 

  • Yokoo H, Tanaka M, Tanaka T, Tsuda A. 1990a. Stress-induced increase in noradrenaline release in the rat hypothalamus assessed by intracranial microdialysis. Experientia 46(3): 290–292.

    Article  CAS  PubMed  Google Scholar 

  • Yokoo H, Tanaka M, Yoshida M, Tsuda A, Tanaka T, et al. 1990b. Direct evidence of conditioned fear-elicited enhancement of noradrenaline release in the rat hypothalamus assessed by intracranial microdialysis. Brain Res 536(1–2): 305–308.

    Article  CAS  PubMed  Google Scholar 

  • Young EA. 1995. The role of gonadal steroids in hypothalamic-pituitary-adrenal axis regulation. Crit Rev Neurobiol 9(4): 371–381.

    CAS  PubMed  Google Scholar 

  • Zelena D, Makara GB, Jezova D. 1999. Simultaneous blockade of two glutamate receptor subtypes (NMDA and AMPA) results in stressor-specific inhibition of prolactin and corticotropin release. Neuroendocrinology 69(5): 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Zelena D, Mergl Z, Makara GB. 2005. Glutamate agonists activate the hypothalamic-pituitary-adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons. Brain Res 1031(2): 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Blaustein JD, De Vries GJ. 1994. Distribution of androgen receptor immunoreactivity in vasopressin- and oxytocin-immunoreactive neurons in the male rat brain. Endocrinology 134(6): 2622–2627.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Cass WA, Herman JP. 1999. Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol 11(5): 361–369.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Cullinan WE, Herman JP. 2005. Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-d-aspartate receptors. J Comp Neurol 484(1): 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Herman JP. 2000. Local integration of glutamate signaling in the hypothalamic paraventricular region: Regulation of glucocorticoid stress responses. Endocrinology 141(12): 4801–4804.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants MH049698 (JPH), MH069680 (JPH), MH069725 (JPH), AG012962 (JPH), MH067705 (EBN), MH065770 (NKM), DA016466 (MMO), and DK059803 (YMU).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Herman, J.P. et al. (2007). Neurochemical Systems Regulating the Hypothalamo-Pituitary-Adrenocortical Axis. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_13

Download citation

Publish with us

Policies and ethics

Navigation