Prediction of Human MicroRNA Targets

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

MicroRNAs (miRNAs) are small, nonprotein-coding RNAs that regulate gene expression. Although hundreds of human miRNA genes have been discovered, the functions of most of these are unknown. Computational predictions indicate that miRNAs, which account for at least 1% of human protein-coding genes, regulate protein production for thousands of or possibly all of human genes. We discuss the functions of mammalian miRNAs and the experimental and computational methods used to detect and predict human miRNA target genes. Anticipating their impact on genome-wide discovery of miRNA targets, we describe the various computational tools and web-based resources available to predict miRNA targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  2. Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., et al. (2005) Inhibition of translational initiation by let-7 MicroRNA in human cells. Science 309, 1573–1576.

    Article  CAS  PubMed  Google Scholar 

  3. Yekta, S., Shih, I. H., and Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.

    Article  CAS  PubMed  Google Scholar 

  4. Lim, L. P., Lau, N. C., Garrett-Engele, P., et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

    Article  CAS  PubMed  Google Scholar 

  5. Griffiths-Jones, S. (2004) The microRNA registry. Nucleic Acids Res. 32, D109–D111.

    Article  CAS  PubMed  Google Scholar 

  6. Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24.

    Article  CAS  PubMed  Google Scholar 

  7. **e, X., Lu, J., Kulbokas, E. J., et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345.

    Article  CAS  PubMed  Google Scholar 

  8. Bentwich, I., Avniel, A., Karov, Y., et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770.

    Article  CAS  PubMed  Google Scholar 

  9. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003) MicroRNA targets in Drosophila. Genome Biol. 5, R1.

    Article  PubMed  Google Scholar 

  10. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004) Human microRNA targets. PLoS Biology 2, e363.

    Article  PubMed  Google Scholar 

  11. Krek, A., Grun, D., Poy, M. N., et al. (2005) Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500.

    Article  CAS  PubMed  Google Scholar 

  12. Doench, J. G. and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511.

    Article  CAS  PubMed  Google Scholar 

  13. Kadonaga, J. T. (2004) Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257.

    Article  CAS  PubMed  Google Scholar 

  14. Hobert, O. (2004) Common logic of transcription factor and microRNA action. Trends Biochem. Sci. 29, 462–468.

    Article  CAS  PubMed  Google Scholar 

  15. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002) Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739.

    Article  CAS  PubMed  Google Scholar 

  16. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., and Kosik, K. S. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281.

    Article  CAS  PubMed  Google Scholar 

  17. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.

    Article  CAS  PubMed  Google Scholar 

  18. Dostie, J., Mourelatos, Z., Yang, M., Sharma, A., and Dreyfuss, G. (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9, 180–186.

    Article  CAS  PubMed  Google Scholar 

  19. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13.

    Article  PubMed  Google Scholar 

  20. Miska, E. A., Alvarez-Saavedra, E., Townsend, M., et al. (2004) Microarray analysis of microRNA expression in the develo** mammalian brain. Genome Biol. 5, R68.

    Article  PubMed  Google Scholar 

  21. Babak, T., Zhang, W., Morris, Q., Blencowe, B. J., and Hughes, T. R. (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813–1819.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C. G., Calin, G. A., Meloon, B., et al. (2004) An oligonucleotide microchip for genomewide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. USA 101, 9740–9744.

    Article  CAS  PubMed  Google Scholar 

  23. Thomson, J. M., Parker, J., Perou, C. M., and Hammond, S. M. (2004) A custom microarray platform for analysis of microRNA gene expression. Nat. Methods 1, 47–53.

    Article  CAS  PubMed  Google Scholar 

  24. Baskerville, S. and Bartel, D. P. (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247.

    Article  CAS  PubMed  Google Scholar 

  25. Houbaviy, H. B., Murray, M. F., and Sharp, P. A. (2003) Embryonic stem cell-specific MicroRNAs. Dev. Cell 5, 351–358.

    Article  CAS  PubMed  Google Scholar 

  26. Suh, M. R., Lee, Y., Kim, J. Y., et al. (2004) Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498.

    Article  CAS  PubMed  Google Scholar 

  27. Calin, G. A., Liu, C. G., Sevignani, C., et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 101, 11,755–11,760.

    Article  CAS  PubMed  Google Scholar 

  28. Takamizawa, J., Konishi, H., Yanagisawa, K., et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  29. Poy, M. N., Eliasson, L., Krutzfeldt, J., et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Article  CAS  PubMed  Google Scholar 

  30. Pfeffer, S., Zavolan, M., Grasser, F. A., et al. (2004) Identification of virus-encoded microRNAs. Science 304, 734–736.

    Article  CAS  PubMed  Google Scholar 

  31. Omoto, S., Ito, M., Tsutsumi, Y., et al. (2004) HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1, 44.

    Article  PubMed  Google Scholar 

  32. Pfeffer, S., Sewer, A., Lagos-Quintana, M., et al. (2005) Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276.

    Article  CAS  PubMed  Google Scholar 

  33. Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., and Cullen, B. R. (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575.

    Article  CAS  PubMed  Google Scholar 

  34. Brennecke, J., Stark, A., Russell, R. B., and Cohen, S. M. (2005) Principles of MicroRNATarget Recognition. PLoS. Biol. 3, e85.

    Article  PubMed  Google Scholar 

  35. Vella, M. C., Reinert, K., and Slack, F. J. (2004) Architecture of a validated microRNA::target interaction. Chem. Biol. 11, 1619–1623.

    Article  CAS  PubMed  Google Scholar 

  36. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K., and Slack, F. J. (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137.

    Article  CAS  PubMed  Google Scholar 

  37. Stark, A., Brennecke, J., Russell, R. B., and Cohen, S. M. (2003) Identification of Drosophila microRNA targets. PLoS. Biol. 3, e60.

    Article  Google Scholar 

  38. Lewis, B. P., Shih, I., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  CAS  PubMed  Google Scholar 

  39. Poy, M. N., Eliasson, L., Krutzfeldt, J., et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Article  CAS  PubMed  Google Scholar 

  40. Krek, A., Grün, D., Poy, P., et al. (2005) Combinatorial microRNA target predictions. Nat. Genet. 37, 226–230.

    Article  Google Scholar 

  41. Kiriakidou, M., Nelson, P. T., Kouranov, A., et al. (2004) A combined computationalexperimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.

    Article  CAS  PubMed  Google Scholar 

  42. Robins, H., Li, Y., and Padgett, R. W. (2005) Incorporating structure to predict microRNA targets. Proc. Natl. Acad. Sci. USA 102, 4006–4009.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86.

    Article  CAS  PubMed  Google Scholar 

  44. Mansfield, J. H., Harfe, B. D., Nissen, R., et al. (2004) MicroRNA-responsive’ sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat. Genet. 36, 1079–1083.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, Y., Samal, E., and Srivastava, D. (2005) Serum response factor regulates a musclespecific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220.

    Article  CAS  PubMed  Google Scholar 

  46. Yu, Z., Raabe, T., and Hecht, N. B. (2005) MicroRNA122a reduces expression of the post-transcriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol. Reprod. 73, 427–433.

    Article  CAS  PubMed  Google Scholar 

  47. Chang, J., Nicolas, E., Marks, D., et al. (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may down-regulate the high affinity cationic amino acid transporter CAT-1. RNA Biology 1, 106–113.

    CAS  PubMed  Google Scholar 

  48. Johnson, S. M., Grosshans, H., Shingara, J., et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.

    Article  CAS  PubMed  Google Scholar 

  49. O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., and Mendell, J. T. (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843.

    Article  CAS  Google Scholar 

  50. Matsumura, I., Tanaka, H., and Kanakura, Y. (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2, 333–338.

    Article  CAS  PubMed  Google Scholar 

  51. He, L., Thomson, J. M., Hemann, M. T., et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435, 828–833.

    Article  CAS  PubMed  Google Scholar 

  52. Esau, C., Kang, X., Peralta, E., et al. (2004) MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52,361–52,365.

    Article  CAS  PubMed  Google Scholar 

  53. Lecellier, C. H., Dunoyer, P., Arar, K., et al. (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560.

    Article  CAS  PubMed  Google Scholar 

  54. Bullrich, F. and Croce, C. M. (2001) Chronic Lymphoid Leukemia, Dekker, New York, pp. 6640–6648.

    Google Scholar 

  55. Calin, G. A., Dumitru, C. D., Shimizu, M., et al. (2002) Frequent deletions and down-regulation of microRNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15,524–15,529.

    Article  CAS  PubMed  Google Scholar 

  56. Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P., and James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891.

    CAS  PubMed  Google Scholar 

  57. Metzler, M., Wilda, M., Busch, K., Viehmann, S., and Borkhardt, A. (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–169.

    Article  CAS  PubMed  Google Scholar 

  58. Calin, G. A., Sevignani, C., Dumitru, C. D., et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999–3004.

    Article  CAS  PubMed  Google Scholar 

  59. Eis, P. S., Tam, W., Sun, L., et al. (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627–3632.

    Article  CAS  PubMed  Google Scholar 

  60. Lu, J., Getz, G., Miska, E. A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834–838.

    Article  CAS  PubMed  Google Scholar 

  61. Ciafre, S. A., Galardi, S., Mangiola, A., et al. (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  62. Caudy, A. A., Myers, M., Hannon, G. J., and Hammond, S. M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496.

    Article  CAS  PubMed  Google Scholar 

  63. **, P., Zarnescu, D. C., Ceman, S., et al. (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113–117.

    Article  CAS  PubMed  Google Scholar 

  64. **, P., Alisch, R. S., and Warren, S. T. (2004) RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6, 1048–1053.

    Article  CAS  PubMed  Google Scholar 

  65. Veneri, M., Zalfa, F., and Bagni, C. (2004) FMRP and its target RNAs: fishing for the specificity. Neuroreport 15, 2447–2450.

    Article  CAS  PubMed  Google Scholar 

  66. Dong, J. T., Boyd, J. C., and Frierson, H. F. Jr. (2001) Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49, 166–171.

    Article  CAS  PubMed  Google Scholar 

  67. Lee, Y. S., Kim, H. K., Chung, S., Kim, K. S., and Dutta A. (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 280, 16,635–16,641.

    Article  CAS  PubMed  Google Scholar 

  68. Chan, J. A., Krichevsky, A. M., and Kosik, K. S. (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  70. Lai, E. C. (2004) Predicting and validating microRNA targets. Genome Biol. 5, 115.

    Article  PubMed  Google Scholar 

  71. Lee, Y. S., Kim, H. K., Chung, S., Kim, K. S., and Dutta, A. (2005) Depletion of human microRNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 280, 16,635–16,641.

    Article  CAS  PubMed  Google Scholar 

  72. Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004) Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA 10, 544–550.

    Article  CAS  PubMed  Google Scholar 

  73. Braasch, D. A. and Corey, D. R. (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol. 8, 1–7.

    Article  CAS  PubMed  Google Scholar 

  74. Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175.

    Article  PubMed  Google Scholar 

  75. Summerton, J. and Weller, D. (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195.

    CAS  PubMed  Google Scholar 

  76. Wheeler, D. L., Barrett, T., Benson, D. A., et al. (2005) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 33, D39–D45.

    Article  CAS  PubMed  Google Scholar 

  77. Birney, E., Andrews, D., Bevan, P., et al. (2004) Ensembl 2004. Nucleic Acids Res. 32 (Database issue), D468–D470.

    Article  CAS  PubMed  Google Scholar 

  78. Saxena, S., Jonsson, Z. O., and Dutta, A. (2003) Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 278, 44,312–44,319.

    Article  CAS  PubMed  Google Scholar 

  79. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  CAS  PubMed  Google Scholar 

  80. Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517.

    Article  CAS  PubMed  Google Scholar 

  81. Rajewsky, N. and Socci, N. D. (2004) Computational identification of microRNA targets. Dev. Biol. 267, 529–535.

    Article  CAS  PubMed  Google Scholar 

  82. Grosshans, H., Johnson, T., Reinert, K. L., Gerstein, M., and Slack, F. J. (2005) The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321–330.

    Article  CAS  PubMed  Google Scholar 

  83. Smalheiser, N. R. and Torvik, V. I. (2004) A population-based statistical approach identifies parameters characteristic of human microRNA-mRNA interactions. BMC Bioinformatics 5, 139.

    Article  PubMed  Google Scholar 

  84. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  85. Rusinov, V., Baev, V., Minkov, I. N., and Tabler, M. (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res. 33, W696–W700.

    Article  CAS  PubMed  Google Scholar 

  86. Leaman, D., Chen, P. Y., Fak, J., et al. (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  87. Chen, P. Y., Manninga, H., Slanchev, K., et al. (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 19, 1288–1293.

    Article  CAS  PubMed  Google Scholar 

  88. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S. R. (2003) Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441.

    Article  CAS  PubMed  Google Scholar 

  89. Weber, M. J. (2005) New human and mouse microRNA genes found by homology search. FEBS J. 272, 59–73.

    Article  CAS  PubMed  Google Scholar 

  90. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  91. Bray, N. and Pachter, L. (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res. 14, 693–699.

    Article  CAS  PubMed  Google Scholar 

  92. Bray, N. and Pachter, L. (2003) MAVID multiple alignment server. Nucleic Acids Res. 31, 3525–3526.

    Article  CAS  PubMed  Google Scholar 

  93. Kent, W. J., Sugnet, C. W., Furey, T. S., et al. (2002) The human genome browser at UCSC. Genome Res. 12, 996–1006.

    CAS  PubMed  Google Scholar 

  94. Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P. (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 145–165.

    Article  CAS  PubMed  Google Scholar 

  95. Burgler, C. and Macdonald, P. M. (2005) Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6, 88.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

John, B., Sander, C., Marks, D.S. (2006). Prediction of Human MicroRNA Targets. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:101

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:101

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation