Localization of Duck Hepatitis B Virus Polymerase Within Cells

  • Protocol
Hepatitis B and D Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 95))

  • 545 Accesses

Abstract

Hepadnaviruses are small, DNA-containing viruses that replicate by reverse transcription (1). They have a lipid envelope surrounding an icosahedral protein core particle, whose shell is composed of a single viral protein, the core protein. Within the core particle, the viral reverse transcriptase (polymerase) is covalently linked to the double-stranded viral genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganem, D. and Schneider, R. J. (2001) Hepadnaviridae: the viruses and their replication. In: Knipe, D. M. Howley, P. M. Griffen, D. E. et al. (eds.), Fields Virology, 4th ed., vol 2, Lippencott Williams & Wilkins, Philadelphia, PA, 2923–2969.

    Google Scholar 

  2. Bartenschlager, R., Junker-Niepmann, M., and Schaller, H. (1990) The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J. Virol. 64, 5324–5332.

    PubMed  CAS  Google Scholar 

  3. Junker-Niepmann, M., Bartenschlager, R., and Schaller, H. (1990) A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J. 9, 3389–3396.

    PubMed  CAS  Google Scholar 

  4. Hirsch, R. C., Lavine, J. E. Chang, L. J. Varmus, H. E. and Ganem, D. (1990) Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription. Nature 344, 552–555.

    Article  PubMed  CAS  Google Scholar 

  5. Tavis, J. E. and Ganem, D. (1996) Evidence for the activation of the hepatitis B virus polymerase by binding of its RNA template. J. Virol. 70, 5741–5750.

    PubMed  CAS  Google Scholar 

  6. Tavis, J. E., Massey, B., and Gong, Y. (1998) The duck hepatitis B virus polymerase is activated by its RNA packaging signal, epsilon. J. Virol. 72, 5789–5796.

    PubMed  CAS  Google Scholar 

  7. Wang, G.-H. and Seeger, C. (1993) Novel mechanism for reverse transcription in hepatitis B viruses. J. Virol. 67, 6507–6512.

    PubMed  CAS  Google Scholar 

  8. Tavis, J. E., Perri, S., and Ganem, D. (1994) Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer. J. Virol. 68, 3536–3543.

    PubMed  CAS  Google Scholar 

  9. Tavis, J. E. and Ganem, D. (1995) RNA sequences controlling the initiation and transfer of duck hepatitis B virus minus-strand DNA. J. Virol. 69, 4283–4291.

    PubMed  CAS  Google Scholar 

  10. Nassal, M. and Rieger, A. (1996) A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis. J. Virol. 70, 2764–2773.

    PubMed  CAS  Google Scholar 

  11. Chang, L.-J., Hirsch, R. C., Ganem, D., and Varmus, H. E. (1990) Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. J. Virol. 64, 5553–5558.

    PubMed  CAS  Google Scholar 

  12. Radziwill, G., Tucker, W., and Schaller, H. (1990) Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. J. Virol. 64, 613–620.

    PubMed  CAS  Google Scholar 

  13. Zoulim, F. and Seeger, C. (1994) Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J. Virol. 68, 6–13.

    PubMed  CAS  Google Scholar 

  14. Weber, M., Bronsema, V., Bartos, H., Bosserhoff, A., Bartenschlager, R., and Schaller, H. (1994) Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription. J. Virol. 68, 2994–2999.

    PubMed  CAS  Google Scholar 

  15. McClure, M. A. (1993) Evolutionary history of reverse transcriptase. In: Skalka, A. M. and Goff, S. P. (eds.), Reverse Transcriptase, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 425–444.

    Google Scholar 

  16. Poch, O., Sauvaget, I., Delarue, M., and Tordo, N. (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8, 3867–3874.

    PubMed  CAS  Google Scholar 

  17. Li, M. D., Bronson, D. L., Lemke, T. D., and Faras, A. J. (1995) Phylogenetic analyses of 55 retroelements on the basis of the nucleotide and product amino acid sequences of the pol gene. Mol. Biol. Evol. 12, 657–670.

    PubMed  CAS  Google Scholar 

  18. Bavand, M., Feitelson, M., and Laub, O. (1989) The hepatitis B virus-associated reverse transcriptase is encoded by the viral pol gene. J. Virol. 63, 1019–1021.

    PubMed  CAS  Google Scholar 

  19. Mack, D. H., Bloch, W., Nath, N., and Sninsky, J. J. (1988) Hepatitis B virus particles contain a polypeptide encoded by the largest open reading frame: a putative reverse transcriptas. J. Virol. 62, 4786–4790.

    PubMed  CAS  Google Scholar 

  20. Bartenschlager, R. and Schaller, H. (1988) The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription. EMBO J. 7, 4185–4192.

    PubMed  CAS  Google Scholar 

  21. Huang, H.-L., Jeng, K.-S., Hu, C.-P., Tsai, C.-H., Lo, S. J., and Chang, C. (2000) Identification and characterization of a structural protein of hepatitis B virus: a polymerase and surface fusion protein encoded by a spliced RNA. Virology 275, 398–410.

    Article  PubMed  CAS  Google Scholar 

  22. Bartenschlager, R., Kuhn, C., and Schaller, H. (1992) Expression of the P-protein of the human hepatitis B virus in a vaccinia virus system and detection of the nucleocapsid-associated P-gene product by radiolabelling at newly introduced phosphorylation sites. Nucl. Acids Res. 20, 195–202.

    Article  PubMed  CAS  Google Scholar 

  23. Oberhaus, S. M. and Newbold, J. E. (1996) Preparations of duck hepatitis B virions contain multiple DNA polymerase activities. Virology 226, 132–134.

    Article  PubMed  CAS  Google Scholar 

  24. Oberhaus, S. M. and Newbold, J. E. (1993) Detection of DNA polymerase activities associated with purified duck hepatitis B virus core particles by using an activity gel assay. J. Virol. 67, 6558–6566.

    PubMed  CAS  Google Scholar 

  25. Bavand, M. R. and Laub, O. (1988) Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles. J. Virol. 62, 626–628.

    PubMed  CAS  Google Scholar 

  26. zu Putlitz, J., Lanford, R. E., Carlson, R. I., Notvall, L., De la Monte, S. M. and Wands, J. R. (1999) Properties of monoclonal antibodies directed against hepatitis B virus polymerase protein. J. Virol. 73, 4188–4196.

    PubMed  Google Scholar 

  27. Yao, E., Gong, Y., Chen, N., and Tavis, J. E. (2000) The majority of duck hepatitis B virus reverse transcriptase in cells is nonencapsidated and is bound to a cytoplasmic structure. J. Virol. 74, 8648–8657.

    Article  PubMed  CAS  Google Scholar 

  28. Radziwill, G., Zentgraf, H., Schaller, H., and Bosch, V. (1988) The duck hepatitis B virus DNA polymerase is tightly associated with the viral core structure and unable to switch to an exogenous template. Virology 163, 123–132.

    Article  PubMed  CAS  Google Scholar 

  29. Sprengel, R., Kuhn, C., Will, H., and Schaller, H. (1985) Comparative sequence analysis of duck and human hepatitis B virus genomes. J. Med. Virol. 15, 323–333.

    Article  PubMed  CAS  Google Scholar 

  30. Condreay, L. D., Aldrich, C. E., Coates, L., Mason, W. S., and Wu, T.-T. (1990) Efficient duck hepatitis B virus production by an avian liver tumor cell line. J. Virol. 64, 3249–3258.

    PubMed  CAS  Google Scholar 

  31. Pollack, J. R. and Ganem, D. (1994) Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis. J. Virol. 68, 5579–5587.

    PubMed  CAS  Google Scholar 

  32. Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19,867–19,870.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Yao, E., Tavis, J.E. (2004). Localization of Duck Hepatitis B Virus Polymerase Within Cells. In: Hamatake, R.K., Lau, J.Y.N. (eds) Hepatitis B and D Protocols. Methods in Molecular Medicine, vol 95. Humana Press. https://doi.org/10.1385/1-59259-669-X:281

Download citation

  • DOI: https://doi.org/10.1385/1-59259-669-X:281

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-105-9

  • Online ISBN: 978-1-59259-669-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation