Zymographic Method for the Measurement of Gelatinase Activity in Brain Tissue

  • Protocol
Neurodegeneration Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 22))

  • 478 Accesses

Abstract

Specific recognition of cell-surface molecules with other cells or extracellular matrix (ECM) is fundamental for cellular motility, reorganization, and proliferation. To carry out these actions, cells often displace space previously occupied by cells or the ECM, thus proteolysis may be required. More functionally in different model systems, integrin-mediated interaction of cells with ECM influences or directs cell growth, differentiation and survival via specific intracellular signaling pathways (13). Thus, the interplay between binding of integrins (and other surface molecules) with ECM and the proteolysis of ECM must be highly orchestrated. The mechanism of degradation of ECM for these physiological purposes is under stringent control, turning on only when appropriate signals are in place for a subsequent function. The importance of ECM-degrading proteases in such interactions was shown recently in transgenic animals expressing an autoactivated, ECM-degrading metalloprotease targeted to mammary epithelial cells. These epithelial cells underwent early apoptosis near the end of pregnancy. When these transgenic mice were crossed with mice overexpressing an endogenous inhibitor of the protease, early apoptosis was not observed (4). These results emphasize the importance of proteinases and their inhibitors in regulating the functions of cell-ECM interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoshiba, K., Rennard, S. I., and Spurzem, J. R. (1997) Cell-matrix and cell-cell interactions modulate apoptosis of bronchial epithelial cells. Am. J. Physiol. 272, L28–L37.

    PubMed  CAS  Google Scholar 

  2. Frisch, S. M. and Francis, H. (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626.

    Article  PubMed  CAS  Google Scholar 

  3. Werb, Z., Sympson, C. J., Alexander, C. M., Thomasset, N., Lund, L. R., MacAuley, A., Ashkenas, J., and Bissell, M. J. (1996) Extracellular matrix remodeling and the regulation of epithelial-stromal interactions during differentiation and involution [Review]. Kidney Int. Suppl. 54, S68–S74.

    PubMed  CAS  Google Scholar 

  4. Alexander, C. M., Howard, E. W., Bissell, M. J., and Werb, Z. (1996) Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135, 1669–1677.

    Article  PubMed  CAS  Google Scholar 

  5. Krystosek, A. and Seeds, N. W. (1981) Plasminogen activator secretion by granule neurons in cultures of develo** cerebellum. Science 213, 7810–7814.

    Article  Google Scholar 

  6. Pittman, R. N. (1985) Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev. Biol. 110, 91–101.

    Article  PubMed  CAS  Google Scholar 

  7. Pittman, R. N. and Williams, A. G. (1988) Neurite penetration into collagen gels requires Ca++-dependent metalloproteinase activity. Dev. Neurosci. 11, 41–51.

    Article  Google Scholar 

  8. Tsirka, S. E., Gualandris, A., Amara, D. G., and Strickland, S. (1995) Excitotoxin-induced degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340–344.

    Article  PubMed  CAS  Google Scholar 

  9. Clements, J. M., Cossins, J. A., Wells, G. M. A., Corkill, D. J., Helfrich, K., Wood, L. M, Pigott, R., Stabler, G., Ward, G. A., Gearing, A. J. H., and Miller, K. M. (1997) Matrix metalloproteinase expression during experimental autoimmune encephalitis and effects of a combined matrix metalloproteinase and tumour necrosis factor inhibitor. J. Neuroimmunol. 74, 85–94.

    Article  PubMed  CAS  Google Scholar 

  10. Gijbels, K., Galardy, R. E., and Steinman, L. (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J. Clin. Invest. 94, 2177–2182.

    Article  PubMed  CAS  Google Scholar 

  11. Backstrom, J. R., Miller, C. A., and Tokes, Z. A. (1992) Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus. J. Neurochem. 58,983–992.

    Article  PubMed  CAS  Google Scholar 

  12. Lim, G. P., Backstrom, J. R., Cullen, M. J., Miller, C. A., Atkinson, R. D., and Tokes, Z. A. (1996) Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J. Neurochem. 67, 251–259.

    Article  PubMed  CAS  Google Scholar 

  13. Gijbels, K., Masure, S., Carton, H., and Opdenakker, G. (1992) Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J. Neuroimmunol. 41, 29–34.

    Article  PubMed  CAS  Google Scholar 

  14. LaFleur, M., Underwood, J. L., Rappolee, D. A., and Werb, A. (1996) Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinase-1. J. Exp. Med. 184, 2311–2326.

    Article  CAS  Google Scholar 

  15. DeClerk, Y. A., Shimada, H., Gonzalez-Gomez, I., and Raffel, C. (1994) Tumoral invasion in the central nervous system. J. Neuw-Oncology 18, 111–121.

    Article  Google Scholar 

  16. Rao, J. S., Steck, P. A., Mohanam, S., Stetler-Stevenson, W. G., Liotta, L. A., and Sawaya, R. (1993) Elevated levels of Mr 92,000 type IV collagenase in human brain tumors. Cane. Res. 53, 2208–2211.

    CAS  Google Scholar 

  17. Backstrom, J. R., Lim, G. P., Cullen, M. J., and Tokes, Z. A. (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide. J. Neurosci. 16,7910–7919.

    PubMed  CAS  Google Scholar 

  18. Colton, C. A., Keri, J. E., Chen, W. T., and Monsky, W. L. (1993) Protease production by cultured microglia—substrate gel analysis and immobilized matrix degradation. J. Neurosci. Res. 35, 297–304.

    Article  PubMed  CAS  Google Scholar 

  19. Nelson, R. B. and Siman, R. (1989) Identification and characterization of calcium-dependent metalloproteases in rat brain. J. Neurochem. 53, 641–647.

    Article  PubMed  CAS  Google Scholar 

  20. Rosenberg, G. A., Dencoff, J. E., Mcguire, P. G., Liotta, L. A., and Stetler-Stevenson, W. G. (1994) Injury-induced 92-kilodalton gelatinase and urokinase expression in rat brain. Lab. Invest. 71,417–422.

    PubMed  CAS  Google Scholar 

  21. Maeda, A. and Sobel, R. A. (1996) Matrix metalloproteinases in the normal central nervous system, microglial nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 55, 300–309.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada, T., Yoshiama, Y., Sato, H., Seiki, M, Shinagawa, A., and Takahashi, M. (1995) White matter microglia produce membrane-type matrix metalloprotease, and activator of gelatinase A, in human brain tissues. Acta Neuropathol. 90, 421–424.

    Article  PubMed  CAS  Google Scholar 

  23. Sato, H., Kida, Y., Mai, M. E., Sasaki, T., Tanaka, J., and Seiki, M. (1992) Expression of gene encoding type IV collagen-degrading metalloproteinases in various human tumor cells. Oncogene 7, 77–83.

    PubMed  CAS  Google Scholar 

  24. Kleiner, D. E. and Stetlerstevenson, W. G. (1994) Quantitative zymography—detection of picogram quantities of gelatinases. Anal. Biochem. 218, 325–329.

    Article  PubMed  CAS  Google Scholar 

  25. Heussen, C. and Dowdle, E. B. (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102, 196–202.

    Article  PubMed  CAS  Google Scholar 

  26. Zucker, S., Lysik, R. M., Zarrabi, H. M., Moll, U., Tickle, S. P., Stetler-Stevenson, W., Baker, T. S., and Docherty, A. J. (1994) Plasma assay of matrix metalloproteinases: MMPs and MMP-inhibitor complexes in cancer. Ann. NYAcad. Sci. 732,248–262.

    Article  CAS  Google Scholar 

  27. Zhang, J. W. and Gottschall, P. E. (1998) Zymographic measurement of gelatinase activity in brain tissue after detergent extraction and affinity-support purification. J. Neurosci. Meth., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gottschall, P.E., Zhang, J.W., Deb, S. (1999). Zymographic Method for the Measurement of Gelatinase Activity in Brain Tissue. In: Harry, J., Tilson, H.A. (eds) Neurodegeneration Methods and Protocols. Methods in Molecular Medicine™, vol 22. Humana Press. https://doi.org/10.1385/0-89603-612-X:209

Download citation

  • DOI: https://doi.org/10.1385/0-89603-612-X:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-612-3

  • Online ISBN: 978-1-59259-604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation