Synthesis of Bioreducible Polycations with Controlled Topologies

  • Protocol
  • First Online:
Nanotechnology for Nucleic Acid Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 948))

  • 2425 Accesses

Abstract

Bioreducible polycations, which possess disulfide linkages in the backbone, have appeared as promising gene delivery carriers due to their high stability in extracellular physiological condition and bioreduction-triggered release of genetic materials, as well as reduced cytotoxicity because intracellular cytosol is a reducing environment containing high level of reducing molecules such as glutathione. Here, we describe the syntheses of bioreducible polycations, and the methods for control over their topology are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    Article  CAS  Google Scholar 

  2. Han S, Mahato RI, Sung YK, Kim SW (2000) Development of biomaterials for gene therapy. Mol Ther 2:302–317

    Article  CAS  Google Scholar 

  3. Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54:715–758

    Article  CAS  Google Scholar 

  4. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  CAS  Google Scholar 

  5. Akinc A, Anderson DG, Lynn DM, Langer R (2003) Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug Chem 14:979–988

    Article  CAS  Google Scholar 

  6. Kim YH, Park JH, Lee M, Park TG, Kim SW (2005) Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release 103:209–219

    Article  CAS  Google Scholar 

  7. Christensen LV, Chang CW, Yockman JW, Conners R, Jackson H, Zhong ZY, Feijen J, Bu DA, Kim SW (2007) Reducible poly(amido ethylenediamine) for hypoxia-inducible VEGF delivery. J Control Release 118:254–261

    Article  CAS  Google Scholar 

  8. Jeong JH, Christensen LV, Yockman JW, Zhong ZY, Engbersen JFJ, Kim WJ, Feijen J, Kim SW (2007) Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials 28:1912–1917

    Article  CAS  Google Scholar 

  9. You YZ, Manickam DS, Zhou QH, Oupicky D (2007) Reducible poly(2-dimethylaminoethyl methaerylate): synthesis, cytotoxicity, and gene delivery activity. J Control Release 122:217–225

    Article  CAS  Google Scholar 

  10. Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery-past, present, and future. Prog Polym Sci 32:799–837

    Article  CAS  Google Scholar 

  11. Lin C, Zhong ZY, Lok MC, Jiang XJ, Hennink WE, Feijen J, Engbersen JFJ (2007) Random and block copolymers of bioreducible poly(amido amine)s with high- and low-basicity amino groups: study of DNA condensation and buffer capacity on gene transfection. J Control Release 123:67–75

    Article  CAS  Google Scholar 

  12. Lin C, Zhong ZY, Lok MC, Jiang XL, Hennink WE, Feijen J, Engbersen JFJ (2006) Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: synthesis and in vitro gene transfer properties. J Control Release 116:130–137

    Article  CAS  Google Scholar 

  13. Lin C, Zhong ZY, Lok MC, Jiang XL, Hennink WE, Feijen J, Engbersen JFJ (2007) Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug Chem 18:138–145

    Article  CAS  Google Scholar 

  14. Wang YX, Chen P, Shen JC (2006) The development and characterization of a glutathione-sensitive cross-linked polyethylenimine gene vector. Biomaterials 27:5292–5298

    Article  CAS  Google Scholar 

  15. Gosselin MA, Guo WJ, Lee RJ (2001) Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem 12:989–994

    Article  CAS  Google Scholar 

  16. Peng Q, Zhong ZL, Zhuo RX (2008) Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors. Bioconjug Chem 19:499–506

    Article  CAS  Google Scholar 

  17. Son S, Singha K, Kim WJ (2010) Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier. Biomaterials 31:6344–6354

    Article  CAS  Google Scholar 

  18. Sun YX, Zeng X, Meng QF, Zhang XZ, Cheng SX, Zhuo RX (2008) The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials 29:4356–4365

    Article  CAS  Google Scholar 

  19. Ou M, Xu RZ, Kim SH, Bull DA, Kim SW (2009) A family of bioreducible poly(disulfide amine)s for gene delivery. Biomaterials 30:5804–5814

    Article  CAS  Google Scholar 

  20. Kim TI, Lee M, Kim SW (2010) A guanidinylated bioreducible polymer with high nuclear localization ability for gene delivery systems. Biomaterials 31:1798–1804

    Article  CAS  Google Scholar 

  21. Chen J, Wu C, Oupicky D (2009) Bioreducible hyperbranched poly(amido amine)s for gene delivery. Biomacromolecules 10:2921–2927

    Article  CAS  Google Scholar 

  22. Lin C, Blaauboer CJ, Timoneda MM, Lok MC, van Steenbergen M, Hennink WE, Zhong ZY, Feijen J, Engbersen JFJ (2008) Bioreducible poly(amido amine)s with oligoamine side chains: synthesis, characterization, and structural effects on gene delivery. J Control Release 126:166–174

    Article  CAS  Google Scholar 

  23. Wan L, You Y, Zou Y, Oupicky D, Mao GZ (2009) DNA release dynamics from bioreducible poly(amido amine) polyplexes. J Phys Chem B 113:13735–13741

    Article  CAS  Google Scholar 

  24. Lin C, Engbersen JFJ (2008) Effect of chemical functionalities in poly(amido amine)s for non-viral gene transfection. J Control Release 132:267–272

    Article  CAS  Google Scholar 

  25. Blacklock J, You YZ, Zhou QH, Mao GZ, Oupicky D (2009) Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA. Biomaterials 30:939–950

    Article  CAS  Google Scholar 

  26. Piest M, Lin C, Mateos-Timoneda MA, Lok MC, Hennink WE, Feijen J, Engbersen JFJ (2008) Novel poly(amido amine)s with bioreducible disulfide linkages in their diamino-units: structure effects and in vitro gene transfer properties. J Control Release 130:38–45

    Article  CAS  Google Scholar 

  27. Meng FH, Hennink WE, Zhong ZY (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198

    Article  CAS  Google Scholar 

  28. Wang RB, Zhou LZ, Zhou YF, Li GL, Zhu XY, Gu HC, Jiang XL, Li HQ, Wu JL, Guo XQ, Zhu BS, Yan DY (2011) Synthesis and gene delivery of poly(amido amine)s with different branched architecture. Biomacromolecules 11:489–495

    Article  Google Scholar 

  29. Stiriba SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41:1329–1334

    Article  CAS  Google Scholar 

  30. You YZ, Yu ZQ, Cui MM, Hong CY (2010) Preparation of photoluminescent nanorings with controllable bioreducibility and stimuli-responsiveness. Angew Chem Int Ed 49:1099–1102

    Article  CAS  Google Scholar 

  31. Tao L, Liu JQ, Tan BH, Davis TP (2009) RAFT synthesis and DNA binding of biodegradable, hyperbranched poly(2-dimethylamino)ethyl methacrylate. Macromolecules 42:4960–4962

    Article  CAS  Google Scholar 

  32. Hong CY, You YZ, Wu DC, Liu Y, Pan CY (2007) Thermal control over the topology of cleavable polymers: from linear to hyperbranched structures. J Am Chem Soc 129:5354

    Article  CAS  Google Scholar 

  33. Lee Y, Mo H, Koo H, Park JY, Cho MY, ** GW, Park JS (2007) Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug Chem 18:13–18

    Article  CAS  Google Scholar 

  34. Peng Q, Hu C, Cheng J, Zhong ZL, Zhuo RX (2009) Influence of disulfide density and molecular weight on disulfide cross-linked polyethylenimine as gene vectors. Bioconjug Chem 20:340–346

    Article  CAS  Google Scholar 

  35. You YZ, Hong CY, Pan CY (2009) Facile One-Pot approach for preparing dually responsive core-shell nanostructure. Macromolecules 42:573–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Zi You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

You, YZ., Yan, JJ., Yu, ZQ., Oupicky, D. (2013). Synthesis of Bioreducible Polycations with Controlled Topologies. In: Ogris, M., Oupicky, D. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 948. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-140-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-140-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-139-4

  • Online ISBN: 978-1-62703-140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation