Reconstitution of Active and Stoichiometric Multisubunit Lysine Acetyltransferase Complexes in Insect Cells

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

Abstract

Protein lysine acetyltransferases (KATs) catalyze acetylation of the ε-amino group on a specific lysine residue, and this posttranslational modification is important for regulating the function and activities of thousands of proteins in diverse organisms from bacteria to humans. Interestingly, many known KATs exist in multisubunit complexes and complex formation is important for their proper structure, function, and regulation. Thus, it is necessary to reconstitute enzymatically active complexes for studying the relationship between subunits and determining structures of the complexes. Due to inherent limitations of bacterial and mammalian expression systems, baculovirus-mediated protein expression in insect cells has proven useful for assembling such multisubunit complexes. Related to this, we have adopted such an approach for reconstituting active tetrameric complexes of monocytic leukemia zinc (MOZ, finger protein, recently renamed MYST3 or KAT6A) and MOZ-related factor (MORF, also known as MYST4 or KAT6B), two KATs directly linked to development of leukemia and self-renewal of stem cells. Herein, we use these complexes as examples to describe the related procedures. Similar methods have been used for reconstituting active complexes of histone deacetylases, lysine demethylases, and ubiquitin ligases, so this simple approach can be adapted for molecular dissection of various multisubunit complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gershey, E.L., et al. (1968) Chemical studies of histone acetylation. The occurrence of epsilon-N-acetyllysine in the f2a1 histone. J Biol Chem 243, 5018–5022

    PubMed  CAS  Google Scholar 

  2. Vidali, G., et al. (1968) Chemical studies of histone acetylation. The distribution of ­epsilon-N-acetyllysine in calf thymus histones. J Biol Chem 243, 6361–6366

    CAS  Google Scholar 

  3. Kouzarides, T. (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19, 1176–1179

    Article  PubMed  CAS  Google Scholar 

  4. Glozak, M.A., et al. (2005) Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23

    Article  PubMed  CAS  Google Scholar 

  5. Kim, G.W., and Yang, X.J. (2010) Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci 36, 211–220

    Google Scholar 

  6. Kim, S.C., et al. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23, 607–618

    Article  PubMed  CAS  Google Scholar 

  7. Choudhary, C., et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840

    Article  PubMed  CAS  Google Scholar 

  8. Zhao, S., et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004

    Article  PubMed  CAS  Google Scholar 

  9. Wang, Q., et al. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004–1007

    Article  PubMed  CAS  Google Scholar 

  10. Ramakrishnan, R., et al. (1998) Acetylation at Lys-92 enhances signaling by the chemotaxis response regulator protein CheY. Proc Natl Acad Sci U S A 95, 4918–4923

    Article  PubMed  CAS  Google Scholar 

  11. Kleff, S., et al. (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270, 24674–24677

    Article  PubMed  CAS  Google Scholar 

  12. Brownell, J.E., et al. (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851

    Article  PubMed  CAS  Google Scholar 

  13. Roth, S.Y., et al. (2001) Histone acetyltransferases. Annu Rev Biochem 70, 81–120

    Article  PubMed  CAS  Google Scholar 

  14. Yang, X.J. (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32, 959–976

    Article  PubMed  CAS  Google Scholar 

  15. Lee, K.K., and Workman, J.L. (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8, 284–295

    Article  PubMed  CAS  Google Scholar 

  16. Parthun, M.R. (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26, 5319–5328

    Article  PubMed  CAS  Google Scholar 

  17. Poveda, A., et al. (2004) Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem 279, 16033–16043

    Article  PubMed  CAS  Google Scholar 

  18. Ai, X., and Parthun, M.R. (2004) The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 14, 195–205

    Article  PubMed  CAS  Google Scholar 

  19. Nagy, Z., and Tora, L. (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26, 5341–5357

    Article  PubMed  CAS  Google Scholar 

  20. Baker, S.P., and Grant, P.A. (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26, 5329–5340

    Article  PubMed  CAS  Google Scholar 

  21. Suganuma, T., et al. (2008) ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15, 364–372

    Article  PubMed  CAS  Google Scholar 

  22. Wang, Y.L., et al. (2008) Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283, 33808–33815

    Article  PubMed  CAS  Google Scholar 

  23. Guelman, S., et al. (2009) The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol 29, 1176–1188

    Article  PubMed  CAS  Google Scholar 

  24. Samara, N.L., et al. (2010) Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328, 1025–1029

    Article  PubMed  CAS  Google Scholar 

  25. Barrios, A., et al. (2007) Expression and purification of recombinant yeast Ada2/Ada3/Gcn5 and Piccolo NuA4 histone acetyltransferase complexes. Methods 41, 271–277

    Article  PubMed  CAS  Google Scholar 

  26. Santoso, B., and Kadonaga, J.T. (2006) Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nat Struct Mol Biol 13, 131–139

    Article  PubMed  CAS  Google Scholar 

  27. Champagne, N., et al. (1999) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274, 28528–28536

    Article  PubMed  CAS  Google Scholar 

  28. Yang, X.J., and Ullah, M. (2007) MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26, 5408–5419

    Article  PubMed  CAS  Google Scholar 

  29. Voss, A.K., and Thomas, T. (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31, 1050–1061

    Article  PubMed  CAS  Google Scholar 

  30. Katsumoto, T., et al. (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20, 1321–1330

    Article  PubMed  CAS  Google Scholar 

  31. Doyon, Y., et al. (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21, 51–64

    Article  PubMed  CAS  Google Scholar 

  32. Vezzoli, A., et al. (2010) Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol 17, 617–619

    Article  PubMed  CAS  Google Scholar 

  33. Hibiya, K., et al. (2009) Brpf1, a subunit of the MOZ histone acetyl transferase complex, maintains expression of anterior and posterior Hox genes for proper patterning of craniofacial and caudal skeletons. Dev Biol 329, 176–190

    Article  PubMed  CAS  Google Scholar 

  34. Laue, K., et al. (2008) The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 135, 1935–1946

    Article  PubMed  CAS  Google Scholar 

  35. Ullah, M., et al. (2008) Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol 28, 6828–6843

    Article  PubMed  CAS  Google Scholar 

  36. Pelletier, N., et al. (2008) Analysis of protein lysine acetylation in vitro and in vivo. Curr Protoc Protein Sci Chapter 14, Unit 14 11

    Google Scholar 

  37. Cote, J., et al. (1995) Basic analysis of transcription factor binding to nucleosomes. Methods Mol. Genet. 6, 108–128

    Article  CAS  Google Scholar 

  38. Zhang, Y., et al. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13, 1924–1935

    Article  PubMed  CAS  Google Scholar 

  39. Cao, R., et al. (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20, 845–854

    Article  PubMed  CAS  Google Scholar 

  40. Shi, Y.J., et al. (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19, 857–864

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge that the f-pAcSG2 plasmid was initially constructed when X.J.Y. was a postdoctoral fellow in Dr. Yoshihiro Nakatani’s laboratory at National Institutes of Health (NIH), the USA. This work was supported by operating grants from Canadian Cancer Society and Canadian Institutes of Health Research (to X.J.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang-Jiao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yan, K., Wu, CJ., Pelletier, N., Yang, XJ. (2012). Reconstitution of Active and Stoichiometric Multisubunit Lysine Acetyltransferase Complexes in Insect Cells. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation