Generation of iPS Cells from Human Umbilical Vein Endothelial Cells by Lentiviral Transduction and Their Differentiation to Neuronal Lineage

  • Protocol
  • First Online:
Human Embryonic and Induced Pluripotent Stem Cells

Abstract

Substantial progress has been made in somatic cell reprogramming through ectopic expression of four transcription factors to yield induced pluripotent stem (iPS) cells. We have used the robust viral-based modification procedure to generate iPS cells from human umbilical vein endothelial cells (HUVEC), an attractive source of the cells for reprogramming. Our method uses a multistep protocol in which reprogramming cells are selected by culturing in defined conditions on Matrigel, which may facilitate potential clinical applications. HUVEC-derived iPS cells show pluripotency in vivo and can differentiate into many cell types in vitro, including neuronal lineages. Here we describe an efficient protocol for generating iPS cells from HUVEC and differentiating these iPS cells into neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Takahashi K., Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–76.

    Article  PubMed  CAS  Google Scholar 

  2. Maherali N., Ahfeldt T., Rigamonti A. et al. (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–5.

    Article  PubMed  CAS  Google Scholar 

  3. Okita K., Nakagawa M., Hyenjong H. et al. (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–53.

    Article  PubMed  CAS  Google Scholar 

  4. Meissner A., Wernig M., Jaenisch R. (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25, 1177–81.

    Article  PubMed  CAS  Google Scholar 

  5. Blelloch R., Venere M., Yen J. et al. (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–7.

    Article  PubMed  CAS  Google Scholar 

  6. Nakagawa M., Koyanagi M., Tanabe K. et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101–6.

    Article  PubMed  CAS  Google Scholar 

  7. Kim J.B., Zaehres H., Wu G. et al. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–50.

    Article  PubMed  CAS  Google Scholar 

  8. Kim J.B., Sebastiano V., Wu G., Araúzo-Bravo M.J. et al. (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–9.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou H., Wu S., Joo J. et al. (2009) Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell 4, 381–4.

    Article  PubMed  CAS  Google Scholar 

  10. Patel M., Yang S. (2010) Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev Rep 6, 367–80.

    Article  CAS  Google Scholar 

  11. Maherali N., Hochedlinger K. (2008) Guide­lines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605.

    Article  PubMed  CAS  Google Scholar 

  12. Yu J., Vodyanik M.A., Smuga-Otto K. et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–20.

    Article  PubMed  CAS  Google Scholar 

  13. Aasen T., Raya A., Barrero M.J. et al. (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276–84.

    Article  PubMed  CAS  Google Scholar 

  14. Loh Y.H., Agarwal S., Park I.H. et al. (2009) Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–9.

    Article  PubMed  CAS  Google Scholar 

  15. Kim J.B., Sebastiano V., Wu G. et al. (2009) Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell 136, 411–19.

    Article  PubMed  CAS  Google Scholar 

  16. Utikal J., Maherali N., Kulalert W. et al. (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. Journal of Cell Science, 122, 3502–10.

    Article  PubMed  CAS  Google Scholar 

  17. Nagler A., Korenstein-Ilan A., Amiel A. et al. (2004) Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells. Exp Hematol 32, 122–30.

    Article  PubMed  CAS  Google Scholar 

  18. Baudin B., Bruneel A., Bosselut N. et al. (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2, 481–5.

    Article  PubMed  CAS  Google Scholar 

  19. Lagarkova M.A., Shutova M.V., Bogomazova A.N. et al. (2010) Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle 9, 937–46.

    Article  PubMed  CAS  Google Scholar 

  20. Lin G., Martins-Taylor K., Xu R.H. (2010) Human embryonic stem cell derivation, maintenance, and differentiation to trophoblast. Methods Mol Biol 636, 1–24.

    Article  PubMed  Google Scholar 

  21. Chambers S.M., Fasano C.A., Papapetrou E.P. et al. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey L. Kiselev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Shutova, M.V., Chestkov, I.V., Bogomazova, A.N., Lagarkova, M.A., Kiselev, S.L. (2011). Generation of iPS Cells from Human Umbilical Vein Endothelial Cells by Lentiviral Transduction and Their Differentiation to Neuronal Lineage. In: Ye, K., **, S. (eds) Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-267-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-267-0_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-266-3

  • Online ISBN: 978-1-61779-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation