Generation of Bispecific and Tandem Diabodies

  • Protocol
  • First Online:
Antibody Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 562))

Summary

Conventionally, antibody phage display has been used to isolate recombinant antibodies that are monovalent in their interaction with target antigens. These antibodies can be reengineered for expression in mammalian cell culture as full-length, monospecific immunoglobulins. An emerging branch of research has sought to generate bivalent recombinant antibodies by manipulating the length of the linker separating heavy- and light-chain variable domains in single-chain Fv proteins, thereby promoting inter-scFv interaction and the formation of “diabodies.” With careful control, this can generate scFv-based proteins able to bind two very distinct targets, “bispecific diabodies.” Further manipulation enables the assembly of higher-order complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  2. Huston, J. S., Levinson, D., Mudgett Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., Crea, R., and Oppermann, H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  3. Milenic, D. E., Yokota, T., Filpula, D. R., Finkelman, M. A., Dodd, S. W., Wood, J. F., Whitlow, M., Snoy, P., and Schlom, J. (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51, 6363–6371.

    PubMed  CAS  Google Scholar 

  4. Yokota, T., Milenic, D. E., Whitlow, M., and Schlom, J. (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52, 3402–3408.

    PubMed  CAS  Google Scholar 

  5. Yokota, T., Milenic, D. E., Whitlow, M., Wood, J. F., Hubert, S. L., and Schlom, J. (1993) Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res. 53, 3776–3783.

    PubMed  CAS  Google Scholar 

  6. Adams, G. P., McCartney, J. E., Tai, M. S., Oppermann, H., Huston, J. S., Stafford, W. F., Bookman, M. A., Fand, I., Houston, L. L., and Weiner, L. M. (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 53, 4026–4034.

    PubMed  CAS  Google Scholar 

  7. Borsi, L., Balza, E., Bestagno, M., Castellani, P., Carnemolla, B., Biro, A., Leprini, A., Sepulveda, J., Burrone, O., Neri, D., and Zardi, L. (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer 102, 75–85.

    Article  PubMed  CAS  Google Scholar 

  8. Holliger, P., Prospero, T., and Winter, G. (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448.

    Article  PubMed  CAS  Google Scholar 

  9. Adams, G. P., Schier, R., McCall, A. M., Crawford, R. S., Wolf, E. J., Weiner, L. M., and Marks, J. D. (1998) Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br. J. Cancer 77, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  10. Viti, F., Tarli, L., Giovannoni, L., Zardi, L., and Neri, D. (1999) Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 59, 347–352.

    PubMed  CAS  Google Scholar 

  11. Kipriyanov, S. M., and Le Gall, F. (2004) Generation and production of engineered antibodies. Mol. Biotechnol. 26, 39–60.

    Article  PubMed  CAS  Google Scholar 

  12. Lu, D., Jimenez, X., Witte, L., and Zhu, Z. (2004) The effect of variable domain orientation and arrangement on the antigen-binding activity of a recombinant human bispecific diabody. Biochem. Biophys. Res. Commun. 318, 507–513.

    Article  PubMed  CAS  Google Scholar 

  13. Perisic, O., Webb, P. A., Holliger, P., Winter, G., and Williams, R. L. (1994) Crystal structure of a diabody, a bivalent antibody fragment. Structure 2, 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  14. Carmichael, J. A., Power, B. E., Garrett, T. P., Yazaki, P. J., Shively, J. E., Raubischek, A. A., Wu, A. M., and Hudson, P. J. (2003) The crystal structure of an anti-CEA scFv diabody assembled from T84.66 scFvs in VL-to-VH orientation: implications for diabody flexibility. J. Mol. Biol. 326, 341–351.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu, Z., Zapata, G., Shalaby, R., Snedecor, B., Chen, H., and Carter, P. (1996) High level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology (NY) 14, 192–196.

    Article  CAS  Google Scholar 

  16. Cochlovius, B., Kipriyanov, S. M., Stassar, M. J., Christ, O., Schuhmacher, J., Strauss, G., Moldenhauer, G., and Little, M. (2000) Treatment of human B cell lymphoma xenografts with a CD3 x CD19 diabody and T cells. J. Immunol. 165, 888–895.

    PubMed  CAS  Google Scholar 

  17. Holliger, P., Brissinck, J., Williams, R. L., Thielemans, K., and Winter, G. (1996) Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng. 9, 299–305.

    Article  PubMed  CAS  Google Scholar 

  18. Kipriyanov, S. M., Moldenhauer, G., Strauss, G., and Little, M. (1998) Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int. J. Cancer 77, 763–772.

    Article  PubMed  CAS  Google Scholar 

  19. Arndt, M. A., Krauss, J., Kipriyanov, S. M., Pfreundschuh, M., and Little, M. (1999) A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplanted human Hodgkin’s tumors. Blood 94, 2562–2568.

    PubMed  CAS  Google Scholar 

  20. Kipriyanov, S. M., Cochlovius, B., Schäfer, H. J., Moldenhauer, G., Bähre, A., Le Gall, F., Knackmuss, S., and Little, M. (2002) Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J. Immunol. 169, 137–144.

    PubMed  CAS  Google Scholar 

  21. Schlenzka, J., Moehler, T. M., Kipriyanov, S. M., Kornacker, M., Benner, A., Bähre, A., Stassar, M. J., Schäfer, H. J., Little, M., Goldschmidt, H., and Cochlovius, B. (2004) Combined effect of recombinant CD19 x CD16 diabody and thalidomide in a preclinical model of human B cell lymphoma. Anticancer Drugs 15, 915–919.

    Article  PubMed  CAS  Google Scholar 

  22. Houtenbos, I., Santegoets, S., Westers, T. M., Waisfisz, Q., Kipriyanov, S., Denkers, F., Scheper, R. J., de Gruijl, T. D., Ossenkoppele, G. J., and van de Loosdrecht, A. A. (2008) The novel bispecific diabody αCD40/αCD28 strengthens leukaemic dendritic cell-induced T-cell reactivity. Br. J. Haematol. in press.

    Google Scholar 

  23. Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., Von der Lieth, C. W., Matys, E. R., and Little, M. (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 293, 41–56.

    Article  PubMed  CAS  Google Scholar 

  24. Kipriyanov, S. M., Moldenhauer, G., Braunagel, M., Reusch, U., Cochlovius, B., Le Gall, F., Kouprianova, O. A., Von der Lieth, C. W., and Little, M. (2003) Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. J. Mol. Biol. 330, 99–111.

    Article  PubMed  CAS  Google Scholar 

  25. Le Gall, F., Reusch, U., Little, M., and Kipriyanov, S. M. (2004) Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng. Des. Sel. 17, 357–366.

    Article  PubMed  CAS  Google Scholar 

  26. Cochlovius, B., Kipriyanov, S. M., Stassar, M. J., Schuhmacher, J., Benner, A., Moldenhauer, G., and Little, M. (2000) Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 x CD19 tandem diabody, and CD28 costimulation. Cancer Res. 60, 4336–4341.

    PubMed  CAS  Google Scholar 

  27. Reusch, U., Le Gall, F., Hensel, M., Moldenhauer, G., Ho, A. D., Little, M., and Kipriyanov, S. M. (2004) Effect of tetravalent bispecific CD19 x CD3 recombinant antibody construct and CD28 costimulation on lysis of malignant B cells from patients with chronic lymphocytic leukemia by autologous T cells. Int. J. Cancer 112, 509–518.

    Article  PubMed  CAS  Google Scholar 

  28. De Jonge, J., Heirman, C., de Veerman, M., Van Meirvenne, S., Moser, M., Leo, O., and Thielemans, K. (1998) In vivo retargeting of T cell effector function by recombinant bispecific single chain Fv (anti-CD3 x anti-idiotype) induces long-term survival in the murine BCL1 lymphoma model. J. Immunol. 161, 1454–1461.

    PubMed  CAS  Google Scholar 

  29. Little, M., and Kipriyanov, S. (2007) Flawed TandAb production. Mol. Immunol. 44, 3083.

    Article  PubMed  CAS  Google Scholar 

  30. Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1997) High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200, 69–77.

    Article  PubMed  CAS  Google Scholar 

  31. Bothmann, H., and Plückthun, A. (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380.

    Article  PubMed  CAS  Google Scholar 

  32. Bothmann, H., and Plückthun, A. (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17100–17105.

    Article  PubMed  CAS  Google Scholar 

  33. Ramm, K., and Plückthun, A. (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J. Biol. Chem. 275, 17106–17113.

    Article  PubMed  CAS  Google Scholar 

  34. Ramm, K., and Plückthun, A. (2001) High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl-isomerase FkpA. J. Mol. Biol. 310, 485–498.

    Article  PubMed  CAS  Google Scholar 

  35. Maurer, R., Meyer, B., and Ptashne, M. (1980) Gene regulation at the right operator (OR) bacteriophage lambda. I. OR3 and autogenous negative control by repressor. J. Mol. Biol. 139, 147–161.

    Article  PubMed  CAS  Google Scholar 

  36. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  37. Kipriyanov, S. M., Moldenhauer, G., Martin, A. C., Kupriyanova, O. A., and Little, M. (1997) Two amino acid mutations in an anti-human CD3 single chain Fv antibody fragment that affect the yield on bacterial secretion but not the affinity. Protein Eng. 10, 445–453.

    Article  PubMed  CAS  Google Scholar 

  38. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  39. Horn, U., Strittmatter, W., Krebber, A., Knupfer, U., Kujau, M., Wenderoth, R., Müller, K., Matzku, S., Plückthun, A., and Riesenberg, D. (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46, 524–532.

    Article  PubMed  CAS  Google Scholar 

  40. Le Gall, F., Reusch, U., Moldenhauer, G., Little, M., and Kipriyanov, S. M. (2004) Immunosuppressive properties of anti-CD3 single-chain Fv and diabody. J. Immunol. Methods 285, 111–127.

    Article  PubMed  CAS  Google Scholar 

  41. Casey, J. L., Keep, P. A., Chester, K. A., Robson, L., Hawkins, R. E., and Begent, R. H. (1995) Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol. Methods 179, 105–116.

    Article  PubMed  CAS  Google Scholar 

  42. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey M. Kipriyanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kipriyanov, S.M. (2009). Generation of Bispecific and Tandem Diabodies. In: Aitken, R. (eds) Antibody Phage Display. Methods in Molecular Biology, vol 562. Humana Press. https://doi.org/10.1007/978-1-60327-302-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-302-2_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-301-5

  • Online ISBN: 978-1-60327-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation