Assembly of Ancient Mitochondrial Genomes Without a Closely Related Reference Sequence

  • Protocol
  • First Online:
Ancient DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1963))

Abstract

Recent methodological advances have transformed the field of ancient DNA (aDNA). Basic bioinformatics skills are becoming essential requirements to process and analyze the sheer amounts of data generated by current aDNA studies and in biomedical research in general. This chapter is intended as a practical guide to the assembly of ancient mitochondrial genomes, directly from genomic DNA-derived next-generation sequencing (NGS) data, specifically in the absence of closely related reference genomes. In a hands-on tutorial suitable for readers with little to no prior bioinformatics experience, we reconstruct the mitochondrial genome of a woolly mammoth deposited ~45,000 years ago. We introduce key software tools and outline general strategies for mitogenome assembly, including the critical quality assessment of assembly results without a reference genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Green RE et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  CAS  Google Scholar 

  2. Meyer M et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226

    Article  CAS  Google Scholar 

  3. Schubert M et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A 111:E5661–E5669

    Article  CAS  Google Scholar 

  4. Palkopoulou E et al (2015) Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol 25:1395–1400

    Article  CAS  Google Scholar 

  5. Węcek K et al (2016) Complex admixture preceded and followed the extinction of wisent in the wild. Mol Biol Evol. https://doi.org/10.1093/molbev/msw254

  6. Barnett R et al (2016) Mitogenomics of the extinct cave lion, Panthera spelaea (Goldfuss, 1810), resolve its position within the Panthera cats. Open Quaternary 2:4

    Article  Google Scholar 

  7. Lindqvist C et al (2010) Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc Natl Acad Sci U S A 107:5053–5057

    Article  CAS  Google Scholar 

  8. Llamas B et al (2016) Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci Adv 2:e1501385

    Article  Google Scholar 

  9. Hervella M et al (2016) The mitogenome of a 35,000-year-old Homo sapiens from Europe supports a Palaeolithic back-migration to Africa. Sci Rep 6:25501

    Article  CAS  Google Scholar 

  10. Soubrier J et al (2016) Early cave art and ancient DNA record the origin of European bison. Nat Commun 7:13158

    Article  Google Scholar 

  11. Paijmans JLA, Gilbert MTP, Hofreiter M (2013) Mitogenomic analyses from ancient DNA. Mol Phylogenet Evol 69:404–416

    Article  CAS  Google Scholar 

  12. Soares AER et al (2016) Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation. BMC Evol Biol 16:230

    Article  Google Scholar 

  13. Gansauge M-T, Meyer M (2014) Selective enrichment of damaged DNA molecules for ancient genome sequencing. Genome Res 24:1543–1549

    Article  CAS  Google Scholar 

  14. Carpenter ML et al (2013) Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet 93:852–864

    Article  CAS  Google Scholar 

  15. Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14:157–167

    Article  CAS  Google Scholar 

  16. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative map** approach. Nucleic Acids Res 41(13):e129

    Article  CAS  Google Scholar 

  17. Chevreux B, Wetter T, Suhai S et al (1999) Genome sequence assembly using trace signals and additional sequence information. German Conf Bioinformatics 99:45–56

    Google Scholar 

  18. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771

    Article  CAS  Google Scholar 

  19. Arnason U et al (2008) Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene 421:37–51

    Article  CAS  Google Scholar 

  20. Camacho C et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

  21. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  22. Milne I et al (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202

    Article  CAS  Google Scholar 

  23. Rogaev EI et al (2006) Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biol 4:e73

    Article  Google Scholar 

  24. Lavrov DV, Pett W (2016) Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol Evol 8:2896–2913

    Article  CAS  Google Scholar 

  25. Bernt M et al (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    Article  Google Scholar 

  26. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  Google Scholar 

  27. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278

    Article  CAS  Google Scholar 

  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  29. Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  Google Scholar 

  30. Hunter SS et al (2015) Assembly by reduced complexity (ARC): a hybrid approach for targeted assembly of homologous sequences. bioRxiv 014662. doi:10.1101/014662

    Google Scholar 

  31. Green RE et al (2008) A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134:416–426

    Article  CAS  Google Scholar 

  32. Brankovics B et al (2016) GRAbB: selective assembly of genomic regions, a new niche for genomic research. PLoS Comput Biol 12:e1004753

    Article  Google Scholar 

  33. Diercksens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hahn, C. (2019). Assembly of Ancient Mitochondrial Genomes Without a Closely Related Reference Sequence. In: Shapiro, B., Barlow, A., Heintzman, P., Hofreiter, M., Paijmans, J., Soares, A. (eds) Ancient DNA. Methods in Molecular Biology, vol 1963. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9176-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9176-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9175-4

  • Online ISBN: 978-1-4939-9176-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation