An Overview of Teratology

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1797))

Abstract

In this chapter, we provide an overview of the basic principles of teratology, beginning with its definition, the critical point for teratogenesis to occur and the most evident etiological agents to improve the understanding of this science.

Teratology is a recent science that began in the early twentieth century, and has greatly improved over the recent years with the advancements in molecular biology, toxicology, animal laboratory science, and genetics, as well as the improvement on the knowledge of the environmental influences.

Nevertheless, more work is required to reduce the influence of hazardous products that could be deleterious during pregnancy, thus reducing teratogenic defects in the newborn. While some teratogenic defects are attributed to their agents with certainty, the same for a lot of other such defects is lacking, necessitating consistent studies to decipher the influence of various teratogenic agents on their corresponding teratogenic defects. It is here that the laboratory animal science is of great importance both in the present and in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sadler TW (2015) Birth defects and prenatal diagnosis, Chapter 9. In: Sadler TW (ed) Langman’s medical embryology, 13th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Ujházy E, Mach M, Navarová J et al (2012) Teratology – past, present and future. Interdiscip Toxicol 5(4):163–168

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gilbert-Barness E, Debich-Spicer D (2004) Embryo and foetal pathology. Color atlas with ultrasound correlation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Sadler TW (2015) Third to eighth weeks: the embryonic period, Chapter 9. In: Sadler TW (ed) Langman’s medical embryology, 13th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  5. Feldkamp ML, Botto LD, Carey JC (2015) Reflections on the etiology of structural birth defects: established teratogens and risk factors. Birth Defects Res A Clin Mol Teratol 103:652–655

    Article  CAS  PubMed  Google Scholar 

  6. McFadden DE, Friedman JM (1997) Chromosome abnormalities in human beings. Mutat Res 396:129–140

    Article  CAS  PubMed  Google Scholar 

  7. Guerneri S, Bettio D, Simoni G et al (1987) Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum Reprod 8:735–739

    Article  Google Scholar 

  8. Murphy E (2015) Medical problems in obstetrics: inherited metabolic disease. Best Pract Res Clin Obstet Gynaecol 29:707–720. https://doi.org/10.1016/j.bpobgyn.2015.04.006

    Article  PubMed  Google Scholar 

  9. Murphy E (2015) Pregnancy in women with inherited metabolic disease. Obstet Med 8(2):61–67. https://doi.org/10.1177/1753495X15576442

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalaninehydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York

    Google Scholar 

  11. Waisbren SE, Azen C (2003) Cognitive and behavioural development in maternal phenylketonuria offspring. Pediatrics 112(6 Pt 2):1544–1547

    PubMed  Google Scholar 

  12. Aguiar A, Ahring K, Almeida MF et al (2015) Practices in prescribing protein substitutes for PKU in Europe: no uniformity of approach. Mol Genet Metab 115(1):17–22. https://doi.org/10.1016/j.ymgme.2015.03.006

    Article  PubMed  CAS  Google Scholar 

  13. Khoury MJ, Cordero JF, Greenberg F et al (1983) A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics 71:815–820

    PubMed  CAS  Google Scholar 

  14. Castori M, Rinaldi R, Capocaccia P et al (2008) VACTERL association and maternal diabetes: a possible causal relationship? Birth Defects Res A Clin Mol Teratol 82(3):169–172. https://doi.org/10.1002/bdra.20432

    Article  PubMed  CAS  Google Scholar 

  15. Gilbert-Barness E (2010) Teratogenic causes of malformations. Ann Clin Lab Sci 40(2):99–114

    PubMed  CAS  Google Scholar 

  16. Mills JL (2010) Malformations in infants of diabetic mothers. Birth Defects Res A Clin Mol Teratol 88(10):769–778. https://doi.org/10.1002/bdra.20757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Simeone RM, Devine OJ, Marcinkevage JA et al (2015) Diabetes and congenital heart defects: a systematic review, meta-analysis, and modeling project. Am J Prev Med 48(2):195–204. https://doi.org/10.1016/j.amepre.2014.09.002

    Article  PubMed  Google Scholar 

  18. Hoang TT, Marengo LK, Mitchell LE et al (2017) Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes. Am J Epidemiol 186(1):118–128. https://doi.org/10.1093/aje/kwx033

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smallridge RC, Landenson PW (2001) Hypothyroidism in pregnancy: consequences to neonatal health. J Clin Endocrinol Metab 86(6):2349–2353

    Article  CAS  PubMed  Google Scholar 

  20. Sahay RK, Nagesh VS (2012) Hypothyroidism in pregnancy. Indian J Endocrinol Metab 16(3):364–370. https://doi.org/10.4103/2230-8210.95667

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaijan PY, Dorreh F, Sharafkhah M et al (2017) Congenital urogenital abnormalities in children with congenital hypothyroidism. Med J Islam Repub Iran 31:7. https://doi.org/10.18869/mjiri.31.7

    Article  Google Scholar 

  22. MacKenzie-Feder J, Sirrs S, Anderson D et al (2011) Primary hyperparathyroidism: an overview. Int J Endocrinol 2011:251410. https://doi.org/10.1155/2011/251410

    Article  PubMed  PubMed Central  Google Scholar 

  23. Som M, Stroup JS (2011) Primary hyperparathyroidism and pregnancy. Proc (Bayl Univ Med Cent) 24(3):220–223

    Article  Google Scholar 

  24. Komarowska H, Bromińska B, Luftmann B, Ruchała M (2017) Primary hyperparathyroidism in pregnancy - a review of literature. Ginekol Pol 88(5):270–275. https://doi.org/10.5603/GP.a2017.0051

    Article  PubMed  Google Scholar 

  25. Kokrdova Z (2010) Pregnancy and primary hyperparathyroidism. J Obstet Gynaecol 30(1):57–59. https://doi.org/10.3109/01443610903315611

    Article  PubMed  CAS  Google Scholar 

  26. Gokkaya N, Gungor A, Bilen A et al (2016) Primary hyperparathyroidism in pregnancy: a case series and literature review. Gynecol Endocrinol 32(10):783–786. https://doi.org/10.1080/09513590.2016.1188916

    Article  PubMed  CAS  Google Scholar 

  27. Schnatz PF, Curry SL (2002) Primary hyperparathyroidism in pregnancy: evidence-based management. Obstet Gynecol Surv 57(6):365–376. https://doi.org/10.1097/01.OGX.0000017377.65823.CA

    Article  PubMed  Google Scholar 

  28. Ullah MI, Uwaifo GI, Koch CA (2017) Primary hyperparathyroidism and hypercalcemia during pregnancy. Horm Metab Res 49(8):638–641. https://doi.org/10.1055/s-0043-112348

    Article  PubMed  CAS  Google Scholar 

  29. Sutandar M, Garcia-Bournissen F, Koren G (2007) Hypothyroidism in pregnancy. J Obstet Gynaecol Can 29(4):354–356. https://doi.org/10.4103/2230-8210.95667

    Article  PubMed  Google Scholar 

  30. Inoue M, Arata N, Koren G, Ito S (2009) Hyperthyroidism during pregnancy. Can Fam Physician 55:701–703

    PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Sun XL, Wang CL, Zhang HY (2017) Influence of screening and intervention of hyperthyroidism on pregnancy outcome. Eur Rev Med Pharmacol Sci 21(8):1932–1937

    PubMed  CAS  Google Scholar 

  32. Springer D, Jiskra J, Limanova Z et al (2017) Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci 54(2):102–116. https://doi.org/10.1080/10408363.2016.1269309

    Article  PubMed  CAS  Google Scholar 

  33. Callies K, Arit W, Scholz HJ et al (1998) Management of hypoparathyroidism during pregnancy - report of twelve cases. Eur J Endocrinol 139:284–289

    Article  CAS  PubMed  Google Scholar 

  34. Hatswell BL, Allan CA, Teng J et al (2015) Management of hypoparathyroidism in pregnancy and lactation - a report of 10 cases. Bone Rep 30(3):15–19. https://doi.org/10.1016/j.bonr.2015.05.005

    Article  Google Scholar 

  35. Vogel F (1992) Risk calculations for hereditary effects of ionizing radiation in humans. Hum Genet 89:127146. https://doi.org/10.1007/BF00217113

    Article  Google Scholar 

  36. Wertelecki W (2010) Malformations in a chornobyl-impacted region. Pediatrics 125:836–843. https://doi.org/10.1542/peds.2009-2219

    Article  Google Scholar 

  37. Scherb H, Voigt K, Kusmierz R (2015) Ionizing radiation and the human gender proportion at birth - a concise review of the literature and complementary analyses of historical and recent data. Early Hum Dev 91:841–850. https://doi.org/10.1016/j.earlhumdev.2015.10.012

    Article  PubMed  Google Scholar 

  38. Feshchenko SP, Schroder HC, Muller WEG, Lazjuk GI (2002) Congenital malformations among new-borns and developmental abnormalities among human embryos in Belarus after Chernobyl accident. Cell Mol Biol 48(4):423–426

    PubMed  CAS  Google Scholar 

  39. Edwards MJ, Saunders RD, Shiota K (2003) Effects of heat on embryos and foetuses. Int J Hyperth 19:295–324. https://doi.org/10.1080/0265673021000039628

    Article  CAS  Google Scholar 

  40. Edwards MJ (2006) Review: Hyperthermia and fever during pregnancy. Birth Defects Res A Clin Mol Teratol 76:507–516. https://doi.org/10.1002/bdra.20277

    Article  PubMed  CAS  Google Scholar 

  41. Graham JM Jr, Edwards MJ, Edwards M (1998) Teratogen update: gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology 58:209–221. https://doi.org/10.1002/(SICI)1096-9926(199811)58:5<209::AID-TERA8>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  42. Moretti ME, Bar-Oz B, Fried S, Koren G (2005) Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 16:216–219

    Article  PubMed  Google Scholar 

  43. Padmanabhan R (2006) Etiology, pathogenesis and prevention of neural tube defects. Congenit Anom 46(2):55–67

    Article  CAS  Google Scholar 

  44. Rolfe RA, Bezer JH, Kim T et al (2017) Abnormal foetal muscle forces result in defects in spinal curvature and alterations in vertebral segmentation and shape. J Orthop Res 35(10):2135–2144. https://doi.org/10.1002/jor.23518

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rezai S, Faye J, Chadee A, Gottimukkala S et al (2016) Amniotic band syndrome, perinatal hospice, and palliative care versus active management. Case Rep Obstet Gynecol 2016:9756987. https://doi.org/10.1155/2016/9756987

    Article  PubMed  PubMed Central  Google Scholar 

  46. Salinas-Torres VM, De La O-Espinoza EA, Salinas-Torres RA (2017) Severe intrauterine amputations in one dichorionic twin with Pentalogy of Cantrell: further evidence and consideration for mechanical teratogenesis. Pediatr Dev Pathol 20(5):440–443. https://doi.org/10.1177/1093526617689896

    Article  PubMed  Google Scholar 

  47. Satake H, Ogino T, Iba K et al (2012) Metacarpal hypoplasia associated with congenital constriction band syndrome. J Hand Surg Am 37(4):760–763. https://doi.org/10.1016/j.jhsa.2012.01.014

    Article  PubMed  Google Scholar 

  48. Agarwal A, Shaharyar A, Kumar A (2015) Clubfoot associated with congenital constriction band: the Ponseti method perspective. Foot Ankle Spec 8(3):230–233. https://doi.org/10.1177/1938640014565049

    Article  PubMed  Google Scholar 

  49. Koskimies E, Syvanen J, Nietosvaara Y et al (2015) Congenital constriction band syndrome with limb defects. J Pediatr Orthop 35(1):100–103. https://doi.org/10.1097/BPO.0000000000000206

    Article  PubMed  Google Scholar 

  50. Kuperman AA, Koren O (2016) Antibiotic use during pregnancy: how bad is it? BMC Med 14(1):91. https://doi.org/10.1186/s12916-016-0636-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Polifka JE, Friedman JM (1999) Clinical teratology: identifying teratogenic risks in humans. Clin Genet 56:409–420

    Article  CAS  PubMed  Google Scholar 

  52. Običan S, Scialli AR (2011) Teratogenic exposures. Am J Med Genet C Semin Med Genet 157C(3):150–169. https://doi.org/10.1002/ajmg.c.30310

    Article  PubMed  Google Scholar 

  53. Bromleya R (2016) The treatment of epilepsy in pregnancy: the neurodevelopmental risks associated with exposure to antiepileptic drugs. Reprod Toxicol 64:203–210. https://doi.org/10.1016/j.reprotox.2016.06.007

    Article  CAS  Google Scholar 

  54. Veroniki AA, Cogo E, Rios P et al (2017) Comparative safety of anti-epileptic drugs during pregnancy: a systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med 15(1):95. https://doi.org/10.1186/s12916-017-0845-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Rangel E, Van Allen MI (2005) Prenatal exposure to fluconazole: an identifiable dysmorphic phenotype. Birth Defects Res A Clin Mol Teratol 73:919–923

    Article  CAS  PubMed  Google Scholar 

  56. Cassina M, Cagnoli GA, Zuccarello D et al (2017) Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur J Med Genet 60(1):22–31. https://doi.org/10.1016/j.ejmg.2016.09.011

    Article  PubMed  Google Scholar 

  57. Giavini E, Menegola E (2012) Biomarkers of teratogenesis: suggestions from animal studies. Reprod Toxicol 34:180–185. https://doi.org/10.1016/j.reprotox.2012.05.003

    Article  PubMed  CAS  Google Scholar 

  58. Tiboni GM, Giampietro F (2005) Murine teratology of fluconazole: evaluation of developmental phase specificity and dose dependence. Pediatr Res 58:94–99. https://doi.org/10.1203/01.PDR.0000166754.24957.73

    Article  PubMed  CAS  Google Scholar 

  59. Ornoy A, Arnon J (1993) Clinical teratology. West J Med 159(3):382–390

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Nahum GG, Kennedy DL (2006) Antibiotic use in pregnancy and lactation: what is and is not known about teratogenic and toxic risks. Obstet Gynecol 107(5):1120–1138. https://doi.org/10.1097/01.AOG.0000216197.26783.b5

    Article  PubMed  CAS  Google Scholar 

  61. Muanda FT, Sheehy O, Bérard A (2017) Use of antibiotics during pregnancy and risk of spontaneous abortion. CMAJ 189(17):E625–E633. https://doi.org/10.1503/cmaj.161020

    Article  PubMed  PubMed Central  Google Scholar 

  62. Van Runnard Heimel PJ, Schobben AF, Huisjes AJ et al (2005) The transplacental passage of prednisolone in pregnancies complicated by early-onset HELLP syndrome. Placenta 26:842–845. https://doi.org/10.1016/j.placenta.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  63. de Vetten L, van Stuijvenberg M, Kema IP, Bocca G (2017) Maternal use of prednisolone is unlikely to be associated with neonatal adrenal suppression-a single-center study of 16 cases. Eur J Pediatr 176(8):1131–1136. https://doi.org/10.1007/s00431-017-2949-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fawcett LB, Buck SJ, Beckman DA, Brent RL (1996) Is there a no-effect dose for corticosteroid-induced cleft palate? The contribution of endogenous corticosterone to the incidence of cleft palate in mice. Pediatr Res 39(5):856–861

    Article  CAS  PubMed  Google Scholar 

  65. Bandoli G, Palmsten K, Forbess Smith CJ, Chambers CD (2017) A review of systemic corticosteroid use in pregnancy and the risk of select pregnancy and birth outcomes. Rheum Dis Clin N Am 43(3):489–502. https://doi.org/10.1016/j.rdc.2017.04.013

    Article  Google Scholar 

  66. Wallensteen L, Zimmermann M, Thomsen Sandberg M et al (2016) Sex-dimorphic effects of prenatal treatment with dexamethasone. J Clin Endocrinol Metab 101(10):3838–3846. https://doi.org/10.1210/jc.2016-1543

    Article  PubMed  CAS  Google Scholar 

  67. Treffers PE, Hanselaar AG, Helmerhorst TJ et al (2001) Consequences of diethylstilboestrol during pregnancy; 50 years later still a significant problem. Ned Tijdschr Geneeskd 145(14):675–680

    PubMed  CAS  Google Scholar 

  68. Kalter H (2003) Teratology in the 20th century. Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol Teratol 25:131–282

    Article  CAS  PubMed  Google Scholar 

  69. Saili KS, Tilton SC, Waters KM, Tanguay RL (2013) Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish. Reprod Toxicol 38:89–101. https://doi.org/10.1016/j.reprotox.2013.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Morthorst JE, Korsgaard B, Bjerregaard P (2016) Severe malformations of eelpout (Zoarces viviparus) fry are induced by maternal estrogenic exposure during early embryogenesis. Mar Environ Res 113:80–87. https://doi.org/10.1016/j.marenvres.2015.11.007

    Article  PubMed  CAS  Google Scholar 

  71. Shaw GM, Lammer EJ, Velie EM (1995) Ovulation induction by clomiphene and neural tube defects. Reprod Toxicol 9(4):399–400

    Article  CAS  PubMed  Google Scholar 

  72. Dolovich LR, Addis A, Vaillancourt JMR et al (1998) Benzodiazepine use in pregnancy and major malformations or oral cleft: meta-analysis of cohort and case-control studies. BMJ 317:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takzare N, Hosseini M-J, Takzare A et al (2007) Teratogenic effects of Diazepam intake during pregnancy leading to cleft lip and palatal anomalies. J Med Sci 7(7):1177–1181. https://doi.org/10.1080/15376510801897739

    Article  CAS  Google Scholar 

  74. Lakehayli S, Said N, El Khachibi M et al (2016) Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats. Neuroscience 330:50–56. https://doi.org/10.1016/j.neuroscience.2016.05.035

    Article  PubMed  CAS  Google Scholar 

  75. Gidai J, Acs N, Bánhidy F, Czeizel AE (2008) An evaluation of data for 10 children born to mothers who attempted suicide by taking large doses of alprazolam during pregnancy. Toxicol Ind Health 24(1–2):53–60. https://doi.org/10.1177/0748233708089017

    Article  PubMed  CAS  Google Scholar 

  76. Timmermann G, Czeizel AE, Bánhidy F, Acs N (2008) A study of the teratogenic and fetotoxic effects of large doses of barbital, hexobarbital and butobarbital used for suicide attempts by pregnant women. Toxicol Ind Health 24(1–2):109–119. https://doi.org/10.1177/0748233708089004

    Article  PubMed  CAS  Google Scholar 

  77. Maier H, Honigsmann H (1996) Concentration of etretinate in plasma and subcutaneous fat after long-term acitretin. Lancet 348(9034):1107. https://doi.org/10.1016/S0140-6736(05)64457-1

    Article  PubMed  CAS  Google Scholar 

  78. Geiger JM, Walker M (2002) Is there a reproductive safety risk in male patients treated with acitretin (Neotigason®/Soriatane®)? Dermatology 205:105–107. https://doi.org/10.1159/000063893

    Article  PubMed  CAS  Google Scholar 

  79. Mazzu-Nascimento T, Melo DG, Morbioli GG et al (2017) Teratogens: a public health issue - a Brazilian overview. Genet Mol Biol 40(2):387–397. https://doi.org/10.1590/1678-4685-GMB-2016-0179

    Article  PubMed  PubMed Central  Google Scholar 

  80. Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioural research. Environ Health Perspect 106(Suppl 3):841–847

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hong YS, Kim YM, Lee KE (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45(6):353–363. https://doi.org/10.3961/jpmph.2012.45.6.353

    Article  PubMed  PubMed Central  Google Scholar 

  82. Scoville SA, Lane OP (2013) Cerebellar abnormalities typical of methylmercury poisoning in a fledged saltmarsh sparrow, Ammodramus caudacutus. Bull Environ Contam Toxicol 90(5):616–620. https://doi.org/10.1007/s00128-013-0974-y

    Article  PubMed  CAS  Google Scholar 

  83. Duan J, Hu H, Li Q et al (2016) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicol Pharmacol 44:120–127. https://doi.org/10.1016/j.etap.2016.05.004

    Article  PubMed  CAS  Google Scholar 

  84. Alves AC, Monteiro MS, Machado AL et al (2017) Mercury levels in parturient and new-borns from Aveiro region, Portugal. J Toxicol Environ Health A 19:1–13. https://doi.org/10.1080/15287394.2017.1286926

    Article  CAS  Google Scholar 

  85. Kirk LE, Jørgensen JS, Nielsen F, Grandjean P (2017) Public health benefits of hair-mercury analysis and dietary advice in lowering methylmercury exposure in pregnant women. Scand J Public Health 45(4):444–451. https://doi.org/10.1177/1403494816689310

    Article  PubMed  Google Scholar 

  86. Tatsuta N, Murata K, Iwai-Shimada M et al (2017) Psychomotor ability in children prenatally exposed to methylmercury: the 18-month follow-up of Tohoku study of child development. Tohoku J Exp Med 242(1):1–8. https://doi.org/10.1620/tjem.242.1

    Article  PubMed  Google Scholar 

  87. Bellinger DC (2005) Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol 73:409–420. https://doi.org/10.1002/bdra.20127

    Article  PubMed  CAS  Google Scholar 

  88. Moore JA (1995) An assessment of lithium using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents. Reprod Toxicol 9(2):175–210

    Article  CAS  PubMed  Google Scholar 

  89. Qureshi WM, Latif ML, Parker TL, Pratten MK (2014) Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. Reprod Toxicol 46:106–114. https://doi.org/10.1016/j.reprotox.2014.03.009

    Article  PubMed  CAS  Google Scholar 

  90. Di Florio A, Munk-Olsen T, Bergink V (2017) Lithium use in pregnancy and the risk of cardiac malformations. N Engl J Med 377(9):893. https://doi.org/10.1056/NEJMc1708919

    Article  PubMed  Google Scholar 

  91. Dodo T, Uchida K, Hirose T et al (2010) Increases in discontinuous rib cartilage and fused carpal bone in rat foetuses exposed to the teratogens, busulfan, acetazolamide, vitamin A, and ketoconazole. Hum Exp Toxicol 29(6):439–450

    Article  CAS  PubMed  Google Scholar 

  92. Al-Saleem AI, Al-Jobair AM (2016) Possible association between acetazolamide administration during pregnancy and multiple congenital malformations. Drug Des Devel Ther 10:1471–1476. https://doi.org/10.2147/DDDT.S99561

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gonzalez CH, Marques-Dias MJ, Kim CA et al (1998) Congenital abnormalities in Brazilian children associated with misoprostol misuse in first trimester of pregnancy. Lancet 351:1624–1627. https://doi.org/10.1016/S0140-6736(97)12363-7

    Article  PubMed  CAS  Google Scholar 

  94. da Silva Dal Pizzol T, Knop FP, Mengue SS (2006) Prenatal exposure to misoprostol and congenital anomalies: systematic review and meta-analysis. Reprod Toxicol 22:666–671. https://doi.org/10.1016/j.reprotox.2006.03.015

    Article  PubMed  CAS  Google Scholar 

  95. Allen R, O’Brien BM (2009) Uses of misoprostol in obstetrics and gynecology. Rev Obstet Gynecol 2:159–168. https://doi.org/10.3909/riog0055

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dellicour S, Sevene E, McGready R et al (2017) First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med 14(5):e1002290. https://doi.org/10.1371/journal.pmed.1002290

    Article  PubMed  PubMed Central  Google Scholar 

  97. Burger RJ, van Eijk AM, Bussink M et al (2015) Artemisinin-based combination therapy versus quinine or other combinations for treatment of uncomplicated Plasmodium falciparum malaria in the second and third trimester of pregnancy: a systematic review and meta-analysis. Open Forum Infect Dis 3(1):ofv170. https://doi.org/10.1093/ofid/ofv170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hall JG, Pauli RM, Wilson KM (1980) Maternal and foetal sequelae of anticoagulation during pregnancy. Am J Med 68:122–140

    Article  CAS  PubMed  Google Scholar 

  99. Barbour LA (1997) Current concepts of anticoagulant therapy in pregnancy. Obstet Gynecol Clin North Am 24(3):499–521

    Article  CAS  PubMed  Google Scholar 

  100. Menger H, Lin AE, Toriello HV et al (1997) Vitamin K deficiency embryopathy: a phenocopy of the warfarin embryopathy due to a disorder of embryonic vitamin K metabolism. Am J Med Genet 72(2):129–134

    Article  CAS  PubMed  Google Scholar 

  101. Chao W-Y, Hsu C-C, Guo YL (1997) Middle-ear disease in children exposed prenatally to polychlorinated biphenyls and polychlorinated dibenzofurans. Arch Environ Health 52(4):257–262. https://doi.org/10.1080/00039899709602195

    Article  PubMed  CAS  Google Scholar 

  102. Bjerregaard-Olesen C, Long M, Ghisari M et al (2017) Temporal trends of lipophilic persistent organic pollutants in serum from Danish nulliparous pregnant women 2011–2013. Environ Sci Pollut Res Int 24(20):16592–16603. https://doi.org/10.1007/s11356-017-8992-7

    Article  PubMed  CAS  Google Scholar 

  103. Man YB, Chow KL, **ng GH et al (2017) A pilot study on health risk assessment based on body loadings of PCBs of lactating mothers at Taizhou, China, the world’s major site for recycling transformers. Environ Pollut 227:364–371. https://doi.org/10.1016/j.envpol.2017.04.069

    Article  PubMed  CAS  Google Scholar 

  104. van der Pol JG, Wolf H, Boer K et al (1992) Jejunal atresia related to the use of methylene blue in genetic amniocentesis in twins. Br J Obstet Gynaecol 99:141–143

    Article  PubMed  Google Scholar 

  105. Cragan JD (1999) Teratogen update: methylene blue. Teratology 60:42–48. https://doi.org/10.1002/(SICI)1096-9926(199907)60:1<42::AID-TERA12>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  106. Pruthi S, Haakenson C, Brost BC et al (2011) Pharmacokinetics of methylene blue dye for lymphatic map** in breast cancer-implications for use in pregnancy. Am J Surg 201(1):70–75. https://doi.org/10.1016/j.amjsurg.2009.03.013

    Article  PubMed  CAS  Google Scholar 

  107. Brent RL, Christian MS, Diener RM (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92(2):152–187. https://doi.org/10.1002/bdrb.20288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Sengpiel V, Elind E, Bacelis J et al (2013) Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: results from a large prospective observational cohort study. BMC Med 11:42. https://doi.org/10.1186/1741-7015-11-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Werler MM (1997) Teratogen update: smoking and reproductive outcomes. Teratology 55:382–388. https://doi.org/10.1002/(SICI)1096-9926(199706)55

    Article  PubMed  CAS  Google Scholar 

  110. Knopik VS, Maccani MA, Francazio S, McGeary JE (2013) The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 24(4):1377–1390. https://doi.org/10.1017/S0954579412000776

    Article  Google Scholar 

  111. Håkonsen LB, Ernst A, Ramlau-Hansen CH (2014) Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl 16(1):39–49. https://doi.org/10.4103/1008-682X.122351

    Article  PubMed  CAS  Google Scholar 

  112. Comasco E, Rangmar J, Eriksson UJ, Oreland L (2017) Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf). https://doi.org/10.1111/apha.12892

  113. Pascual M, Montesinos J, Montagud-Romero S et al (2017) TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of foetal alcohol spectrum disorders. J Neuroinflammation 14(1):145. https://doi.org/10.1186/s12974-017-0918-2

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pearson MA, Hoyme HE, Seaver LH, Rimsza ME (1994) Toluene embryopathy: delineation of the phenotype and comparison with foetal alcohol syndrome. Pediatrics 93:211–215

    PubMed  CAS  Google Scholar 

  115. Wells PG, Kim PM, Laposa RR et al (1997) Oxidative damage in chemical teratogenesis. Mutat Res 396:65–78

    Article  CAS  PubMed  Google Scholar 

  116. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300. https://doi.org/10.1177/1534735404270335

    Article  PubMed  CAS  Google Scholar 

  117. Hansen JM (2006) Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today 78:293–307. https://doi.org/10.1002/bdrc.20085

    Article  PubMed  CAS  Google Scholar 

  118. van Gelder MMHJ, van Rooij IALM, Miller RK et al (2010) Teratogenic mechanisms of medical drugs. Hum Reprod Update 16:378–394. https://doi.org/10.1093/humupd/dmp052

    Article  PubMed  CAS  Google Scholar 

  119. Rasti S, Ghasemi FS, Abdoli A et al (2016) ToRCH “co-infections” are associated with increased risk of abortion in pregnant women. Congenit Anom 56(2):73–78. https://doi.org/10.1111/cga.12138

    Article  Google Scholar 

  120. Banatvala JE, Brown DW (2004) Rubella. Lancet 363(9415):1127–1137. https://doi.org/10.1016/S0140-6736(04)15897-2

    Article  PubMed  CAS  Google Scholar 

  121. Neu N, Duchon J, Zachariah P (2015) ToRCH infections. Clin Perinatol 42(1):77–103, viii. https://doi.org/10.1016/j.clp.2014.11.001

    Article  PubMed  Google Scholar 

  122. Dunn D, Wallon M, Peyron F et al (1999) Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counseling. Lancet 353:1829–1833. https://doi.org/10.1016/S0140-6736(98)08220-8

    Article  PubMed  CAS  Google Scholar 

  123. Silasi M, Cardenas I, Kwon JY et al (2015) Viral infections during pregnancy. Am J Reprod Immunol 73(3):199–213. https://doi.org/10.1111/aji.12355

    Article  PubMed  PubMed Central  Google Scholar 

  124. Many A, Koren G (2006) Toxoplasmosis during pregnancy. Can Fam Physician 52(1):29–32

    PubMed  PubMed Central  Google Scholar 

  125. Nau J, Eller SK, Wenning J et al (2017) Experimental porcine Toxoplasma gondii infection as a representative model for human toxoplasmosis. Mediat Inflamm 2017:3260289. https://doi.org/10.1155/2017/3260289

    Article  CAS  Google Scholar 

  126. Bowie WR, King AS, Werker DH et al (1997) Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 350:173–177. https://doi.org/10.1016/S0140-6736(96)11105-3

    Article  PubMed  CAS  Google Scholar 

  127. Wallon M, Peyron F, Cornu C et al (2013) Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56(9):1223–1231. https://doi.org/10.1093/cid/cit032

    Article  PubMed  CAS  Google Scholar 

  128. Forrest JM, Turnbull FM, Sholler GF (2002) Gregg’s congenital rubella patients 60 years later. Med J Aust 177:664–667

    PubMed  Google Scholar 

  129. de Silva M, Munoz FM, Mcmillan M et al (2016) Congenital anomalies: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 34(49):6015–6026. https://doi.org/10.1016/j.vaccine.2016.03.047

    Article  Google Scholar 

  130. Miller E, Cradock-Watson JE, Pollack TM (1982) Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 2:781–784. https://doi.org/10.1016/S0140-6736(82)92677-0

    Article  PubMed  CAS  Google Scholar 

  131. Webster WS (1998) Teratogen update: congenital rubella. Teratology 58:13–23. https://doi.org/10.1002/(SICI)1096-9926(199807)58:1<13::AID-TERA5>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  132. Temple RO, Pass RF, Boll TJ (2000) Neuropsychological functioning in patients with asymptomatic congenital cytomegalovirus infection. J Dev Behav Pediatr 21:417–422

    Article  CAS  PubMed  Google Scholar 

  133. Carrara J, Delaveaucoupet J, Cordier AG et al (2016) Detailed in utero ultrasound description of 34 cases of congenital cytomegalovirus infection. J Gynecol Obstet Biol Reprod 45(4):397–406. https://doi.org/10.1016/j.jgyn.2015.04.014

    Article  CAS  Google Scholar 

  134. Davis NL, King CC, Kourtis AP (2017) Cytomegalovirus infection in pregnancy. Birth Defects Res 109(5):336–346. https://doi.org/10.1002/bdra.23601

    Article  PubMed  CAS  Google Scholar 

  135. Marsico C, Kimberlin DW (2017) Congenital cytomegalovirus infection: advances and challenges in diagnosis, prevention and treatment. Ital J Pediatr 43(1):38. https://doi.org/10.1186/s13052-017-0358-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Grosse SD, Ross DS, Dollard SC (2008) Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol 41:57–62. https://doi.org/10.1016/j.jcv.2007.09.004

    Article  PubMed  Google Scholar 

  137. Cannon MJ, Griffiths PD, Aston V, Rawlinson WD (2014) Universal new-born screening for congenital CMV infection: what is the evidence of potential benefit? Rev Med Virol 24:291–307. https://doi.org/10.1002/rmv.1790

    Article  PubMed  PubMed Central  Google Scholar 

  138. Picone O, Teissier N, Cordier AG et al (2014) Detailed in utero ultrasound description of 30 cases of congenital cytomegalovirus infection. Prenat Diagn 34(6):518–524. https://doi.org/10.1002/pd.4340

    Article  PubMed  CAS  Google Scholar 

  139. Enders G, Bolley I, Miller E et al (1994) Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 343:1548–1551. https://doi.org/10.1016/S0140-6736(94)92943-2

    Article  PubMed  CAS  Google Scholar 

  140. Jones KL, Johnson KA, Chambers CD (1994) Offspring of women infected with varicella during pregnancy: a prospective study. Teratology 49:29–32. https://doi.org/10.1002/tera.1420490106

    Article  PubMed  CAS  Google Scholar 

  141. Paryani SG, Arvin AM (1986) Intrauterine infection with varicella-zoster virus after maternal varicella. N Engl J Med 314:1542–1546. https://doi.org/10.1056/NEJM198606123142403

    Article  PubMed  CAS  Google Scholar 

  142. Pastaszak AL, Levy M, Schick B et al (1994) Outcome after maternal varicella infection in the first 20 weeks of pregnancy. N Engl J Med 330:901–905. https://doi.org/10.1056/NEJM199403313301305

    Article  Google Scholar 

  143. Lamont RF, Sobel J, Vaisbuch E et al (2011) Parvovirus B19 infection in human pregnancy. BJOG 118(2):175–186. https://doi.org/10.1111/j.1471-0528.2010.02749.x

    Article  PubMed  CAS  Google Scholar 

  144. Lamont RF, Sobel JD, Carrington D et al (2011b) Varicella zoster virus (chickenpox) infection in pregnancy. BJOG 118(10):1155–1162. https://doi.org/10.1111/j.1471-0528.2011.02983.x

    Article  PubMed  PubMed Central  Google Scholar 

  145. Schulert GS, Walsh WF, Weitkamp JH (2011) Polymicrogyria and congenital parvovirus B19 infection. AJP Rep 1(2):105–110. https://doi.org/10.1055/s-0031-1285984

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ornoy A, Ergaz Z (2017) Parvovirus B19 infection during pregnancy and risks to the foetus. Birth Defects Res 109(5):311–323. https://doi.org/10.1002/bdra.23588

    Article  PubMed  CAS  Google Scholar 

  147. Fell DB, Savitz DA, Kramer MS et al (2016) Maternal influenza and birth outcomes: systematic review of comparative studies. BJOG 124(1):48–59. https://doi.org/10.1111/1471-0528.14143

    Article  PubMed  PubMed Central  Google Scholar 

  148. Katz MA, Gessner BD, Johnson J et al (2017) Incidence of influenza virus infection among pregnant women: a systematic review. BMC Pregnancy Childbirth 17:155. https://doi.org/10.1186/s12884-017-1333-5

    Article  PubMed  PubMed Central  Google Scholar 

  149. Barreto de Araújo TV, Rodrigues LC, **menes RAA et al (2016) Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infect Dis 16:1356–1363

    Article  Google Scholar 

  150. Gouzil J, Fablet A, Lara E et al (2017) Nonstructural protein NSs of Schmallenberg virus is targeted to the nucleolus and induces nucleolar disorganization. J Virol 91(1):e01263–e01216

    Article  CAS  PubMed  Google Scholar 

  151. Olmo IG, Carvalho TG, Costa VV et al (2017) Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front Immunol 8:1016

    Article  PubMed  PubMed Central  Google Scholar 

  152. De Regge N, Van den Berg T, Georges L, Cay B (2013) Diagnosis of Schmallenberg virus infection in malformed lambs and calves and first indications for virus clearance in the fetus. Vet Microbiol 162(2–4):595–600

    Article  CAS  PubMed  Google Scholar 

  153. Wisløff H, Nordvik BS, Sviland S, Tønnessen R (2014) First documented clinical case of Schmallenberg virus in Norway: foetal malformations in a calf. Vet Rec 174:120

    Article  PubMed  Google Scholar 

  154. Brülisauer F, Scholes S, Caldow GL et al (2017) Role of Schmallenberg virus infection in congenital malformations in ruminants in Scotland in spring 2017. Vet Rec 181:341–343

    Article  PubMed  Google Scholar 

  155. Harter CA, Benirschke K (1976) Foetal syphilis in the first trimester. Am J Obstet Gynecol 124:705–711. https://doi.org/10.1016/S0002-9378(16)33340-3

    Article  PubMed  CAS  Google Scholar 

  156. Singh AE, Romanowski B (1999) Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin Microbiol Rev 12(2):187–209

    PubMed  PubMed Central  CAS  Google Scholar 

  157. de Santis M, De Luca C, Mappa I et al (2012) Syphilis infection during pregnancy: foetal risks and clinical management. Infect Dis Obstet Gynecol 430585:1. https://doi.org/10.1155/2012/430585

    Article  Google Scholar 

  158. Ingall D, Norin L (2006) Syphilis. In: Remington JS, Klein JO (eds) Infectious diseases of the foetus and new-born infant, 5th edn. Saunders, Philadelphia

    Google Scholar 

  159. Pereira AA, Castro AM, Venturini RR et al (2017) Pseudoparalysis of parrot: a diagnostic aid in congenital syphilis. J Pediatr 1:282. https://doi.org/10.1016/j.jpeds.2017.07.048

    Article  Google Scholar 

  160. Feldkamp ML, Enioutina EY, Botto LD et al (2015) Chlamydia trachomatis IgG3 seropositivity is associated with gastroschisis. J Perinatol 35(11):930–934. https://doi.org/10.1038/jp.2015.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Hougland KT, Hanna AM, Meyers R, Null D (2005) Increasing prevalence of gastroschisis in Utah. J Pediatr Surg 40:535–540. https://doi.org/10.1016/j.jpedsurg.2004.11.026

    Article  PubMed  Google Scholar 

  162. Castilla EE, Mastroiacovo P, Orioli IM (2008) Gastroschisis: international epidemiology and public health perspectives. Am J Med Genet C Semin Med Genet 148C:162–179. https://doi.org/10.1002/ajmg.c.30181

    Article  PubMed  Google Scholar 

  163. Vu LT, Nobuhara KK, Laurent C, Shaw GM (2008) Increasing prevalence of gastroschisis: population-based study in California. J Pediatr 152:807–811. https://doi.org/10.1016/j.jpeds.2007.11.037

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria dos Anjos Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Calado, A.M., dos Anjos Pires, M. (2018). An Overview of Teratology. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation