Analysis of Polyamines Conjugated with Hydroxycinnamoyl Acids by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

Polyamines conjugated with hydroxycinnamic acids are phenolic compounds, which are widespread in the plant kingdom playing important roles in development and defence responses. This chapter describes the methodology employed to analyze these phenolamides in plant material by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS-MS). These compounds are not always in sufficient concentration in plant tissues for analysis by more conventional methods such as UV detection of HPLC. Owing to their particular molecular structure, they cannot be analyzed as free polyamines. Thus, described herein is an extraction method for hydroxycinnamic acid amides in plant tissues such as leaves, and their analysis by LC-MS-MS, including identification and quantification protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80:577–589

    Article  CAS  Google Scholar 

  2. Edreva AM, Velikova VB, Tsonev TD (2007) Phenylamides in plants. Russ J Plant Physiol 54:287–301

    Article  CAS  Google Scholar 

  3. Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824

    Article  CAS  PubMed  Google Scholar 

  4. Torras-Claveria L, Jáuregui O, Codina C, Tiburcio AF, Bastida J, Viladomat F (2012) Analysis of phenolic compounds by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and water-stressed tobacco. Plant Sci 182:71–78

    Article  CAS  PubMed  Google Scholar 

  5. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  Google Scholar 

  6. Elejalde-Palmett C, de Bernonville TD, Glevarec G, Pichon O, Papon N, Courdavault V, St-Pierre B, Giglioli-Guivarc'h N, Lanoue A, Besseau S (2015) Characterization of a spermidine hydroxycinnamoyltransferase in Malus domestica highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. J Exp Bot 66:7271–7285

    Article  CAS  PubMed  Google Scholar 

  7. Mbadiwe EI (1973) Caffeoylputrescine from Pentaclethra macrophylla. Phytochemistry 12:2546

    Article  CAS  Google Scholar 

  8. Moreau RA, Nuñez A, Singh V (2001) Diferuloylputrescine and p-coumaroyl-feruloylputrescine, abundant polyamine conjugates in lipid extracts of maize kernels. Lipids 36:839–844

    Article  CAS  PubMed  Google Scholar 

  9. Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshihara T, Katsuyoshi Y, Takamatsu S, Sakamura S (1981) A new lignan amide, grossamide, from bell pepper (Capsicum annuum Var. grossurri). Agric Biol Chem 45:2593–2598

    CAS  Google Scholar 

  11. Hedberg C, Hesse M, Werner C (1996) Spermine and spermidine hydroxycinnamoyl transferases in Aphelandra tetragona. Plant Sci 113:149–156

    Article  CAS  Google Scholar 

  12. Fu XP, Wu T, Abdurahim M, Su Z, Hou XL, Aisa HA, Wu H (2008) New spermidine alkaloids from Capparis spinosa roots. Phytochem Lett 1:59–62

    Article  CAS  Google Scholar 

  13. Buta JG, Izac RR (1972) Caffeoylputrescine in Nicotiana tabacum. Phytochemistry 11:1188–1189

    Article  CAS  Google Scholar 

  14. Martin-Tanguy J, Martin C, Gallet M (1973) Présence de composés aromatiques liés à la putrescine dans divers Nicotiana virosés. C R Acad Sci Paris D 276:1433–1435

    CAS  Google Scholar 

  15. Cabanne F, Dalebroux MA, Martin-Tanguy J, Martin C (1981) Hydroxycinnamic acid amides and ripening to flower of Nicotiana tabacum var. xanthi n.c. Physiol Plant 53:399–404

    Article  CAS  Google Scholar 

  16. Meurer B, Wray V, Grotjahn L, Wiermann R, Strack D (1986) Hydroxycinnamic acid spermidine amides from pollen of Corylus avellana L. Phytochemistry 25:433–435

    Article  CAS  Google Scholar 

  17. Strack D, Eilert U, Wray V, Wolff J, Jaggy H (1990) Tricoumaroylspermidine in flowers of Rosaceae. Phytochemistry 29:2893–2896

    Article  CAS  Google Scholar 

  18. Bokern M, Witte L, Wray V, Nimtz M, Meurer-Grimes B (1995) Trisubstituted hydroxycinnamic acid spermidines from Quercus dentata pollen. Phytochemistry 39:1371–1375

    Article  CAS  Google Scholar 

  19. Lin S, Mullin C (1999) Lipid, polyamide, and flavonol phagostimulants for adult western corn rootworm from sunflower (Helianthus annuus L.) pollen. J Agric Food Chem 47:1223–1229

    Article  CAS  PubMed  Google Scholar 

  20. Sobolev VS, Sy A, Gloer JB (2008) Spermidine and flavonoid conjugates from peanut (Arachis hypogaea) flowers. J Agric Food Chem 56:2960–2969

    Article  CAS  PubMed  Google Scholar 

  21. Kite C, Larsson S, Veitch NC, Porter EA, Ding N, Simmonds MSJ (2013) Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks. J Agric Food Chem 61:3501–3508

    Article  CAS  PubMed  Google Scholar 

  22. Wiese S, Wubshet SG, Nielsen J, Staerk D (2013) Coupling HPLC-SPE-NMR with a microplate-based high-resolution antioxidant assay for efficient analysis of antioxidants in food–validation and proof-of-concept study with caper buds. Food Chem 141:4010–4018

    Article  CAS  PubMed  Google Scholar 

  23. Werner C, Hu W, Lorenzi-riatsch A, Hesse M (1995) Di-coumaroylspermidines and tri-coumaroylspermidines in anthers of different species of the genus Aphelandra. Phytochemistry 40:461–465

    Article  CAS  Google Scholar 

  24. Youhnovski N, Werner C, Hesse M (2001) N,N′,N″-triferuloylspermidine, a new UV absorbing polyamine derivative from pollen of Hippeastrum x hortorum. Z Naturforsch C 56:526–530

    Article  CAS  PubMed  Google Scholar 

  25. Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58:246–259

    Article  CAS  PubMed  Google Scholar 

  26. Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20:212–218

    Article  CAS  PubMed  Google Scholar 

  27. Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, Bellés JM (2014) Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact 27:1159–1169

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Long Z, Guo Z, Wang Z, Zhang X, Ye RD, Liang X, Civelli O (2016) Hydroxycinnamic acid amides from Scopolia tangutica inhibit the activity of M1 muscarinic acetylcholine receptor in vitro. Fitoterapia 108:9–12

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi T, Tong W (2015) Regulation and diversity of polyamine biosynthesis in plants. In: Kusano T, Suzuki H (eds) Polyamines. A universal molecular nexus for growth, survival, and specialized metabolism. Springer, Tokyo

    Google Scholar 

  30. von Ropenack E, Parr A, Schulze-Lefert P (1998) Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 273:9013–9022

    Article  Google Scholar 

  31. Muroi A, Ishihara A, Tanaka C, Ishizuka A, Takabayashi J, Miyoshi H, Nishioka T (2009) Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta 230:517–527

    Article  CAS  PubMed  Google Scholar 

  32. Walters D, Meurer-Grimes B, Rovira I (2001) Antifungal activity of three spermidine conjugates. FEMS Microbiol Lett 201:255–258

    Article  CAS  PubMed  Google Scholar 

  33. Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin-Tanguy J, Martin C, Gallet M, Vernoy R (1976) Sur de puissants inhibiteurs de multiplication du virus de la mosaïque du tabac. C R Acad Sci Paris D 282:2231–2234

    CAS  Google Scholar 

  35. ** S, Yoshida M, Nakajima T, Murai A (2003) Accumulation of hydroxycinnamic acid amides in winter wheat under snow. Biosci Biotechnol Biochem 67:1245–1249

    Article  CAS  PubMed  Google Scholar 

  36. Camacho-Cristóbal JJ, Maldonado JM, González-Fontes A (2005) Boron deficiency increases putrescine levels in tobacco plants. J Plant Physiol 162:921–928

    Article  CAS  PubMed  Google Scholar 

  37. Izaguirre MM, Mazza CA, Svatos A, Baldwin IT, Ballaré CL (2007) Solar ultraviolet-B radiation and insect herbivory trigger partially overlap** phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann Bot 99:103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meurer B, Wiermann R, Strack D (1988) Phenylpropanoid patterns in Fagales and their phylogenetic relevance. Phytochemistry 27:823–828

    Article  CAS  Google Scholar 

  39. Meurer B, Wray V, Wiermann R, Strack D (1988) Hydroxycinnamic acid-spermidine amides from pollen of Alnus glutinosa, Betula verrucosa and Pterocarya fraxinifolia. Phytochemistry 27:839–843

    Article  CAS  Google Scholar 

  40. Leubner-Metzger G, Amrhein N (1993) The distribution of hydroxycinnamoylputrescines in different organs of Solanum tuberosum and other solanaceous species. Phytochemistry 32:551–556

    Article  CAS  Google Scholar 

  41. Panagabko C, Chenier D, Fixon-Owoo S, Atkinson JK (2000) Ion-pair HPLC determination of hydroxycinnamic acid monoconjugates of putrescine, spermidine and spermine. Phytochem Anal 11:11–17

    Article  CAS  Google Scholar 

  42. López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, Conejero V (2011) Identification of defense metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot 74:216–228

    Article  CAS  Google Scholar 

  43. Chong ESL, McGhie TK, Heyes JA, Stowell KM (2013) Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry. J Sci Food Agric 93:3801–3808

    Article  CAS  PubMed  Google Scholar 

  44. Long Z, Zhang Y, Guo Z, Wang L, Xue X, Zhang X, Wang S, Wang Z, Civelli O, Liang X (2014) Amide alkaloids from Scopolia tangutica. Planta Med 80:1124–1130

    Article  CAS  PubMed  Google Scholar 

  45. Dobritzsch M, Lübken T, Eschen-Lippold L, Gorzolka K, Blum E, Matern A, Marillonnet S, Böttcher C, Dräger B, Rosahl S (2016) MATE transporter-dependent export of hydroxycinnamic acid amides. Plant Cell 28:583–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG (2005) The orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  CAS  PubMed  Google Scholar 

  47. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Scientific Technical Services from University of Barcelona. The research team belongs to the Natural Products Group (2016-SGR-920 Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Tiburcio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Torras-Claveria, L., Bastida, J., Viladomat, F., Tiburcio, A.F. (2018). Analysis of Polyamines Conjugated with Hydroxycinnamoyl Acids by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation