Detection of Multiple Genome Modifications Induced by the CRISPR/Cas9 System

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

The recent remarkable innovation of an RNA-guided nuclease system, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system, enables us the modification of specific genomic loci in various model animals including zebrafish. With this system, multiple guide RNAs simultaneously injected with the Cas9 nuclease into zebrafish embryos cause multiple genome modifications at different genomic loci with high efficiency; therefore, a simple method to detect individual mutations at distinct loci is desired. In this chapter, we describe a procedure for inducing multiple CRISPR/Cas9-mediated genome modifications in zebrafish and a convenient method to detect CRISPR/Cas9-induced insertion and/or deletion (indel) mutations using a heteroduplex mobility assay (HMA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  2. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. **ek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  5. Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  CAS  PubMed  Google Scholar 

  6. Mojica FJ, Diez-Villaseñor C, García-Martínez J et al (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  CAS  PubMed  Google Scholar 

  7. Hisano Y, Ota S, Kawahara A (2014) Genome editing using artificial site-specific nucleases in zebrafish. Dev Growth Differ 56:26–33

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ota S, Hisano Y, Ikawa Y et al (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19:555–564

    Article  CAS  PubMed  Google Scholar 

  11. Miller JC, Holmes MC, Wang J et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  12. Kim HJ, Lee HJ, Kim H et al (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dahlem TJ, Hoshijima K, Jurynec MJ et al (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ota S, Hisano Y, Muraki M et al (2013) Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hwang WY, Fu Y, Reyon D et al (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Japan Society for the Promotion of Science and the Program for Next-Generation World-Leading Researchers (NEXT Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ota, S., Kawahara, A. (2016). Detection of Multiple Genome Modifications Induced by the CRISPR/Cas9 System. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation