CLIP-Seq to Discover Transcriptome-Wide Imprinting of RNA Binding Proteins in Living Cells

  • Protocol
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1296))

Abstract

UV cross-linking and immunoprecipitation coupled to high-throughput sequencing (CLIP-seq) is used to characterize RNA targets of RNA binding proteins (RBP) in a large scale manner. This powerful method allows the stringent purification of direct RNA binding sites of RBPs in living cells. Here, we describe in detail the protocol we employed to identify RNA targets of the human RNA helicase eIF4AIII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee SR, Lykke-Andersen J (2013) Emerging roles for ribonucleoprotein modification and remodeling in controlling RNA fate. Trends Cell Biol 23:504–510

    Google Scholar 

  2. Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700

    Google Scholar 

  3. Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869

    Google Scholar 

  4. Tange TO, Nott A, Moore MJ (2004) The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 16:279–284

    Google Scholar 

  5. Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Seraphin B, Le Hir H, Andersen GR (2006)Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972

    Google Scholar 

  6. Le Hir H, Andersen GR (2008) Structural insights into the exon junction complex. Curr Opin Struct Biol 18:112–119

    Google Scholar 

  7. Ashton-Beaucage D, Udell CM, Lavoie H, Baril C, Lefrancois M, Chagnon P, Gendron P, Caron-Lizotte O, Bonneil E, Thibault P, Therrien M (2010) The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143:251–262

    Google Scholar 

  8. Chazal PE, Daguenet E, Wendling C, Ulryck N, Tomasetto C, Sargueil B, Le Hir H (2013) EJC core component MLN51 interacts with eIF3 and activates translation. Proc Natl Acad Sci U S A 110:5903–5908

    Google Scholar 

  9. Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987–4997

    Google Scholar 

  10. Roignant JY, Treisman JE (2010) Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene. Cell 143:238–250

    Google Scholar 

  11. Sauliere J, Murigneux V, Wang Z, Marquenet E, Barbosa I, Le Tonqueze O, Audic Y, Paillard L, Roest Crollius H, Le Hir H (2012) CLIP-seq of eIF4AIII reveals transcriptome-wide map** of the human exon junction complex. Nat Struct Mol Biol 19:1124–1131

    Google Scholar 

  12. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Google Scholar 

  13. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Google Scholar 

  14. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286

    Google Scholar 

  15. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008)HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Le Hir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Saulière, J., Le Hir, H. (2015). CLIP-Seq to Discover Transcriptome-Wide Imprinting of RNA Binding Proteins in Living Cells. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 1296. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2547-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2547-6_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2546-9

  • Online ISBN: 978-1-4939-2547-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation