Determination of RNA Chaperone Activity Using an Escherichia coli Mutant

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

Bacterial cold shock proteins (CSPs) function as RNA chaperones that destabilize RNA secondary structures. A quadruple mutant of Escherichia coli (cspA, cspB, cspG, and cspE) displays a cold-sensitive growth phenotype. Plant cold shock domain (CSD) proteins have been shown to complement the cold-sensitive phenotype of the E. coli mutant and to share a function with E. coli CSPs as RNA chaperones. This methodology, which is detailed here, can be utilized to reveal or probe the RNA chaperone activity of heterologous proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Phadtare S, Tyagi S, Inouye M, Severinov K (2002) Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. J Biol Chem 277:46706–46711

    Article  CAS  PubMed  Google Scholar 

  2. Kloks CP, Spronk CA, Lasonder E et al (2002) The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol 316:317–326

    Article  CAS  PubMed  Google Scholar 

  3. Weber MH, Volkov AV, Fricke I et al (2001) Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription. J Bacteriol 183:6435–6443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443

    Article  CAS  PubMed  Google Scholar 

  5. Graumann P, Wendrich TM, Weber MH et al (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756

    Article  CAS  PubMed  Google Scholar 

  6. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202

    Article  CAS  PubMed  Google Scholar 

  7. Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255

    Article  CAS  PubMed  Google Scholar 

  9. **a B, Ke H, Inouye M (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40:179–188

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki K, Imai R (2011) Pleiotropic roles of cold shock domain proteins in plants. Front Plant Sci 2:116

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    Article  CAS  PubMed  Google Scholar 

  12. Nakaminami K, Sasaki K, Kajita S et al (2005) Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Lett 579:4887–4891

    Article  CAS  PubMed  Google Scholar 

  13. Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A 103:10122–10127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Imai R, Kim MH, Sasaki K et al (2013) Cold shock domain proteins in Arabidopsis : functions in stress tolerance and development. In: Yoshida M, Matsumoto N, Imai R (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 131–142

    Chapter  Google Scholar 

  15. Kim JS, Park SJ, Kwak KJ et al (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim MH, Sasaki K, Imai R (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

    Article  CAS  PubMed  Google Scholar 

  18. Kwak KJ, Park SJ, Han JH et al (2011) Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. J Exp Bot 62:4003–4011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Masui Y, Coleman J, Inouye M (1983) Multipurpose expression cloning vehicles in Escherichia coli. In: Inouye M (ed) Experimental manipulation of gene expressions. Academic, New York, pp 15–32

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Japan Society for the Promotion of Science (KAKENHI Scientific Research B 19380063) and NARO project 112g0 (Wheat and Soybean Biotechnology) to R.I. We thank Dr. Linda Jewell for her comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryozo Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, MH., Imai, R. (2015). Determination of RNA Chaperone Activity Using an Escherichia coli Mutant. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation