Three-Dimensional Traction Force Microscopy of Engineered Epithelial Tissues

  • Protocol
  • First Online:
Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

Several biological processes, including cell migration, tissue morphogenesis, and cancer metastasis, are fundamentally physical in nature; each implicitly involves deformations driven by mechanical forces. Traction force microscopy (TFM) was initially developed to quantify the forces exerted by individual isolated cells in two-dimensional (2D) culture. Here, we extend this technique to estimate the traction forces generated by engineered three-dimensional (3D) epithelial tissues embedded within a surrounding extracellular matrix (ECM). This technique provides insight into the physical mechanisms that underlie tissue morphogenesis in 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

BSA:

Bovine serum albumin

DMEM:

Dulbecco’s modified Eagle’s medium

DVC:

Digital volume correlation

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

FBS:

Fetal bovine serum

HBSS:

Hanks’ balanced salt solution

PBS:

Phosphate-buffered saline

PDMS:

Polydimethylsiloxane

TFM:

Traction force microscopy

References

  1. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 102(33):11594–11599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  PubMed  CAS  Google Scholar 

  3. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  PubMed  CAS  Google Scholar 

  4. Lui C, Lee K, Nelson CM (2012) Matrix compliance and rhoa direct the differentiation of mammary progenitor cells. Biomech Model Mechanobiol 11(8):1241–1249

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gomez EW, Chen QK, Gjorevski N, Nelson CM (2010) Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem 110(1):44–51

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Lee K, Chen QK, Lui C, Cichon MA, Radisky DC, Nelson CM (2012) Matrix compliance regulates rac1b localization, nadph oxidase assembly, and epithelial-mesenchymal transition. Mol Biol Cell 23(20):4097–4108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    Article  PubMed  CAS  Google Scholar 

  8. Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127(6 Pt 2):1957–1964

    Article  PubMed  CAS  Google Scholar 

  9. Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70(4):2008–2022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Maskarinec SA, Franck C, Tirrell DA, Ravichandran G (2009) Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci U S A 106(52):22108–22113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Legant WR, Miller JS, Blakely BL, Cohen DM, Genin GM, Chen CS (2010) Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat Methods 7(12):969–971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Nelson CM, Inman JL, Bissell MJ (2008) Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protocols 3(4):674–678

    Article  CAS  Google Scholar 

  14. Gjorevski N, Nelson CM (2012) Map** of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys J 103(1):152–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310

    Article  CAS  Google Scholar 

  16. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47(3):427–438

    Article  Google Scholar 

  17. Comsol multiphysics user's guide (2011). Comsol 4.2a. COMSOL AB, Burlington, MA.

    Google Scholar 

Download references

Acknowledgements

We thank Lynn Loo for cleanroom access. This work was supported in part by grants from the NIH (GM083997 and HL110335), the David and Lucile Packard Foundation, the Alfred P. Sloan Foundation, and the Camille and Henry Dreyfus Foundation. C.M.N. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. N.G. was supported in part by a Wallace Memorial Honorific Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Piotrowski, A.S., Varner, V.D., Gjorevski, N., Nelson, C.M. (2015). Three-Dimensional Traction Force Microscopy of Engineered Epithelial Tissues. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation