Applying Reverse Genetics to Study Measles Virus Interactions with the Host

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Abstract

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73(11):9679–9682. https://doi.org/10.1128/jvi.73.11.9679-9682.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakaya T, Cros J, Park MS, Nakaya Y, Zheng HY, Sagrera A, Villar E, Garcia-Sastre A, Palese P (2001) Recombinant Newcastle disease virus as a vaccine vector. J Virol 75(23):11868–11873. https://doi.org/10.1128/jvi.75.23.11868-11873.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yun SI, Kim SY, Rice CM, Lee YM (2003) Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77(11):6450–6465. https://doi.org/10.1128/jvi.77.11.6450-6465.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Billeter MA, Naim HY, Udem SA (2009) Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses. Curr Top Microbiol Immunol 329:129–162. https://doi.org/10.1007/978-3-540-70523-9_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Isel C, Munier S, Naffakh N (2016) Experimental approaches to study genome packaging of influenza A viruses. Viruses 8(8):218. https://doi.org/10.3390/v8080218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neumann G, Kawaoka Y (2001) Reverse genetics of influenza virus. Virology 287(2):243–250. https://doi.org/10.1006/viro.2001.1008

    Article  CAS  PubMed  Google Scholar 

  7. Stobart CC, Moore ML (2014) RNA virus reverse genetics and vaccine design. Viruses 6(7):2531–2550. https://doi.org/10.3390/v6072531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14(23):5773–5784. https://doi.org/10.1002/j.1460-2075.1995.tb00266.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F (2003) A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77(21):11546–11554. https://doi.org/10.1128/jvi.77.21.11546-11554.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM (2020) Opportunities and challenges of the tag-assisted protein purification techniques: applications in the pharmaceutical industry. Biotechnol Adv 45:107653. https://doi.org/10.1016/j.biotechadv.2020.107653

    Article  CAS  PubMed  Google Scholar 

  11. Ohashi M, Holthaus AM, Calderwood MA, Lai C-Y, Krastins B, Sarracino D, Johannsen E (2015) The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog 11(4):e1004822. https://doi.org/10.1371/journal.ppat.1004822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan J, **ao P, Kong D, Liu X, Meng L, An T, Cai X, Wang H, Yu L (2022) Engineering His-tagged Senecavirus A for one-step purification of viral antigens. Vaccines (Basel) 10(2):170. https://doi.org/10.3390/vaccines10020170

    Article  CAS  PubMed  Google Scholar 

  13. Ma X, Li C, **a Q, Zhang Y, Yang Y, Wahaab A, Liu K, Li Z, Li B, Qiu Y, Wei J, Ma Z (2022) Construction of a recombinant Japanese encephalitis virus with a hemagglutinin-tagged NS2A: a model for an analysis of biological characteristics and functions of NS2A during viral infection. Viruses 14(4):706. https://doi.org/10.3390/v14040706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skerra A, Schmidt TGM (1999) Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol Eng 16(1–4):79–86. https://doi.org/10.1016/s1050-3862(99)00033-9

    Article  CAS  PubMed  Google Scholar 

  15. Mayer D, Molawi K, Martinez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, Garcia-Sastre A, Schwemmle M (2007) Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res 6(2):672–682. https://doi.org/10.1021/pr060432u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, Mammi P, Mancini E, Yanovsky MJ, Andino R, Krogan N, Srebrow A, Gamarnik AV (2016) The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog 12(8):e1005841. https://doi.org/10.1371/journal.ppat.1005841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fournier G, Chiang C, Munier S, Tomoiu A, Demeret C, Vidalain PO, Jacob Y, Naffakh N (2014) Recruitment of RED-SMU1 complex by Influenza A virus RNA polymerase to control viral mRNA splicing. PLoS Pathog 10(6):e1004164. https://doi.org/10.1371/journal.ppat.1004164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Frederick KM, Haverland NA, Ciborowski P, Belshan M (2016) Investigation of the HIV-1 matrix interactome during virus replication. Proteomics Clin Appl 10(2):156–163. https://doi.org/10.1002/prca.201400189

    Article  CAS  PubMed  Google Scholar 

  19. Komarova AV, Combredet C, Meyniel-Schicklin L, Chapelle M, Caignard G, Camadro JM, Lotteau V, Vidalain PO, Tangy F (2011) Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses. Mol Cell Proteomics 10(12):M110.007443. https://doi.org/10.1074/mcp.M110.007443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meignie A, Combredet C, Santolini M, Kovacs IA, Douche T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV (2021) Proteomic analysis uncovers measles virus protein C interaction with p65-iASPP protein complex. Mol Cell Proteomics 20:100049. https://doi.org/10.1016/j.mcpro.2021.100049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Komarova AV, Combredet C, Sismeiro O, Dillies MA, Jagla B, Sanchez David RY, Vabret N, Coppee JY, Vidalain PO, Tangy F (2013) Identification of RNA partners of viral proteins in infected cells. RNA Biol 10(6):944–956. https://doi.org/10.4161/rna.24453

    Article  CAS  PubMed  Google Scholar 

  22. Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23(2):477–484. https://doi.org/10.1016/0092-8674(81)90143-4

    Article  CAS  PubMed  Google Scholar 

  23. Muhlberger E (2007) Filovirus replication and transcription. Future Virol 2(2):205–215. https://doi.org/10.2217/17460794.2.2.205

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cattaneo R, Rebmann G, Schmid A, Baczko K, ter Meulen V, Billeter MA (1987) Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6(3):681–688. https://doi.org/10.1002/j.1460-2075.1987.tb04808.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plumet S, Duprex WP, Gerlier D (2005) Dynamics of viral RNA synthesis during measles virus infection. J Virol 79(11):6900–6908. https://doi.org/10.1128/JVI.79.11.6900-6908.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all past and present members of the Innovation Lab: Vaccines and the RNA and immunity laboratory. This work was supported by Institut Pasteur grants and BECAL Paraguay PhD grant to HV. Figures 2 and 3 were created with BioRender.com.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassia V. Komarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vera-Peralta, H. et al. (2024). Applying Reverse Genetics to Study Measles Virus Interactions with the Host. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation