Purification of Single-Stranded RNA Bacteriophages and Host Receptors for Structural Determination Using Cryo-Electron Microscopy

  • Protocol
  • First Online:
Phage Engineering and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2793))

  • 389 Accesses

Abstract

Single-stranded RNA bacteriophages (ssRNA phages) are small viruses with a compact genome (~3–4 kb) that infect gram-negative bacteria via retractile pili. These phages have been applied in various fields since their discovery approximately 60 years ago. To understand their biology, it is crucial to analyze the structure of mature virions. Cryo-electron microscopy (cryo-EM) has been employed to determine the structures of two ssRNA phages, MS2 and Qβ. This chapter presents a method for purifying these two phages and their receptor, the F-pilus, to allow examination using cryo-EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loeb T, Zinder ND (1961) A bacteriophage containing RNA. Proc Natl Acad Sci USA 47(3):282–289. https://doi.org/10.1073/pnas.47.3.282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shishovs M et al (2016) Structure of AP205 coat protein reveals circular permutation in ssRNA bacteriophages. J Mol Biol 428(21):4267–4279. https://doi.org/10.1016/j.jmb.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  3. Dai X et al (2017) In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541(7635):112–116. https://doi.org/10.1038/nature20589

    Article  CAS  PubMed  Google Scholar 

  4. Cui Z, Gorzelnik KV, Chang J, Langlais C, Jakana J, Young R, Zhang J (2017) Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis. Proc Natl Acad Sci USA 114:11697

    Google Scholar 

  5. Gorzelnik KV, Cui Z, Reed CA, Jakana J, Young R, Zhang J (2016) Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ. Proc Natl Acad Sci USA 113(41):11519–11524. https://doi.org/10.1073/pnas.1609482113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koning RI et al (2016) Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat Commun 7:12524. https://doi.org/10.1038/ncomms12524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pichon X, Robert MC, Bertrand E, Singer RH, Tutucci E (2020) New generations of MS2 variants and MCP fusions to detect single mRNAs in living eukaryotic cells. Methods Mol Biol 2166:121–144. https://doi.org/10.1007/978-1-0716-0712-1_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tutucci E, Vera M, Biswas J, Garcia J, Parker R, Singer RH (2018) An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15(1):81–89. https://doi.org/10.1038/nmeth.4502

    Article  CAS  PubMed  Google Scholar 

  9. Fu Y, Li J (2016) A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Res 211:9–16. https://doi.org/10.1016/j.virusres.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Sun Y, Jia T, Zhang R, Zhang K, Wang L (2014) Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer 134(7):1683–1694. https://doi.org/10.1002/ijc.28482

    Article  CAS  PubMed  Google Scholar 

  11. Zhao L, Kopylov M, Potter CS, Carragher B, Finn MG (2019) Engineering the PP7 virus capsid as a peptide display platform. ACS Nano 13(4):4443–4454. https://doi.org/10.1021/acsnano.8b09683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Valegård K, Liljas L, Fridborg K, Unge T (1990) The three-dimensional structure of the bacterial virus MS2. Nature 345(6270):36–41. https://doi.org/10.1038/345036a0

    Article  PubMed  Google Scholar 

  13. Golmohammadi R, Fridborg K, Bundule M, Valegård K, Liljas L (1996) The crystal structure of bacteriophage Q beta at 3.5 A resolution. Structure 4(5):543–554. https://doi.org/10.1016/s0969-2126(96)00060-3

    Article  CAS  PubMed  Google Scholar 

  14. Tars K, Bundule M, Fridborg K, Liljas L (1997) The crystal structure of bacteriophage GA and a comparison of bacteriophages belonging to the major groups of Escherichia coli leviviruses. J Mol Biol 271(5):759–773. https://doi.org/10.1006/jmbi.1997.1214

    Article  CAS  PubMed  Google Scholar 

  15. Tars K, Fridborg K, Bundule M, Liljas L (2000) The three-dimensional structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7-A resolution. Virology 272(2):331–337. https://doi.org/10.1006/viro.2000.0373

    Article  CAS  PubMed  Google Scholar 

  16. Persson M, Tars K, Liljas L (2008) The capsid of the small RNA phage PRR1 is stabilized by metal ions. J Mol Biol 383(4):914–922. https://doi.org/10.1016/j.jmb.2008.08.060

    Article  CAS  PubMed  Google Scholar 

  17. Plevka P et al (2009) The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly. J Mol Biol 391(3):635–647. https://doi.org/10.1016/j.jmb.2009.06.047

    Article  CAS  PubMed  Google Scholar 

  18. Rūmnieks J et al (2020) Three-dimensional structure of 22 uncultured ssRNA bacteriophages: flexibility of the coat protein fold and variations in particle shapes. Sci Adv 6(36). https://doi.org/10.1126/sciadv.abc0023

  19. Neri U et al (2022) Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185(21):4023–4037.e18. https://doi.org/10.1016/j.cell.2022.08.023

    Article  CAS  PubMed  Google Scholar 

  20. Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C (2020) Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci Adv 6(6):eaay5981. https://doi.org/10.1126/sciadv.aay5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goetschius DJ, Lee H, Hafenstein S (2019) CryoEM reconstruction approaches to resolve asymmetric features. Adv Virus Res 105:73–91. https://doi.org/10.1016/bs.aivir.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  22. Cui Z et al (2017) Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis. Proc Natl Acad Sci USA 114(44):11697–11702. https://doi.org/10.1073/pnas.1707102114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meng R et al (2019) Structural basis for the adsorption of a single-stranded RNA bacteriophage. Nat Commun 10(1):3130. https://doi.org/10.1038/s41467-019-11126-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kopsidas G et al (2007) RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution. BMC Biotechnol 7:18. https://doi.org/10.1186/1472-6750-7-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Novella IS, Presloid JB, Taylor RT (2014) RNA replication errors and the evolution of virus pathogenicity and virulence. Curr Opin Virol 9:143–147. https://doi.org/10.1016/j.coviro.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  26. Strauss Jr JH, Sinsheimer RL (1963) Purification and properties of bacteriophage MS2 and of its ribonucleic acid. J Mol Biol 7:43–54 [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/13978804

  27. Costa TRD et al (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166(6):1436–1444.e10. https://doi.org/10.1016/j.cell.2016.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez Rivera AK, Forest KT (2017) Shearing and enrichment of extracellular type IV pili. Methods Mol Biol 1615:311–320. https://doi.org/10.1007/978-1-4939-7033-9_25

    Article  CAS  PubMed  Google Scholar 

  29. Helmuth R, Achtman M (1978) Cell-cell interactions in conjugating Escherichia coli: purification of F pili with biological activity. Proc Natl Acad Sci USA 75(3):1237–1241. https://doi.org/10.1073/pnas.75.3.1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Prof. Ry Young at the Texas A&M University, TX, for graciously granting us the pMS2000. We extend our sincere thanks to Prof. Peter J. Christie at McGovern Medical School, Houston, TX, for generously providing us with pOX38 as a kind gift. Additionally, we would like to acknowledge Zachary Lill, a lab member, for his invaluable assistance in proofreading. We are grateful for the support received from TAMU T3 and X-grants, the Welch Foundation grant A-1863, NSF grant MCB-1902392, and NIH grants R21AI156846 and R01GM141659, as well as funding from the Center for Phage Technology, jointly sponsored by Texas AgriLife and Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thongchol, J., Zhang, J. (2024). Purification of Single-Stranded RNA Bacteriophages and Host Receptors for Structural Determination Using Cryo-Electron Microscopy. In: Peng, H., Liu, J., Chen, I.A. (eds) Phage Engineering and Analysis. Methods in Molecular Biology, vol 2793. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3798-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3798-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3797-5

  • Online ISBN: 978-1-0716-3798-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation