A Mammalian-Based Synthetic Biology Toolbox to Engineer Membrane–Membrane Interfaces

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

  • 328 Accesses

Abstract

Intercellular membrane–membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane–membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane–membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belardi B, Son S, Felce JH et al (2020) Cell–cell interfaces as specialized compartments directing cell function. Nat Rev Mol Cell Biol 21:750–764

    Article  CAS  Google Scholar 

  2. Yang BA, Westerhof TM, Sabin K et al (2021) Engineered tools to study intercellular communication. Adv Sci (Weinh) 8:2002825

    Article  CAS  Google Scholar 

  3. James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–69

    Article  CAS  PubMed Central  Google Scholar 

  4. Otani T, Furuse M (2020) Tight junction structure and function revisited. Trends Cell Biol 30:805–817

    Article  CAS  Google Scholar 

  5. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532

    Article  CAS  Google Scholar 

  6. Südhof TC, Malenka RC (2008) Understanding synapses: past, present, and future. Neuron 60:469–476

    Article  PubMed Central  Google Scholar 

  7. Sjöqvist M, Andersson ER (2019) Do as I say, not(ch) as I do: lateral control of cell fate. Dev Biol 447:58–70

    Article  Google Scholar 

  8. Prinz WA, Toulmay A, Balla T (2019) The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21:7–24

    Article  Google Scholar 

  9. Feinberg EH, VanHoven MK, Bendesky A et al (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363

    Article  CAS  Google Scholar 

  10. Kanadome T, Hayashi K, Seto Y et al (2022) Development of intensiometric indicators for visualizing N-cadherin interaction across cells. Commun Biol 5:1–12

    Article  Google Scholar 

  11. Schmid EM, Bakalar MH, Choudhuri K et al (2016) Size-dependent protein segregation at membrane interfaces. Nat Phys 12:704–711

    Article  CAS  PubMed Central  Google Scholar 

  12. Belardi B, Son S, Vahey MD et al (2019) Claudin-4 reconstituted in unilamellar vesicles is sufficient to form tight interfaces that partition membrane proteins. J Cell Sci 132:jcs221556

    CAS  Google Scholar 

  13. Freeman SA, Goyette J, Furuya W et al (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164:128–140

    Article  CAS  PubMed Central  Google Scholar 

  14. Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  CAS  PubMed Central  Google Scholar 

  15. Feng S, Varshney A, Coto Villa D et al (2019) Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Communications Biology 2:1–12

    Article  Google Scholar 

  16. Moghimianavval H, Patel C, Mohapatra S et al (2022) Engineering functional membrane–membrane interfaces by InterSpy. Small 19:e2202104

    Article  PubMed Central  Google Scholar 

  17. Keeble AH, Turkki P, Stokes S et al (2019) Approaching infinite affinity through engineering of peptide-protein interaction. Proc Natl Acad Sci U S A 116:26523–26533

    Article  CAS  PubMed Central  Google Scholar 

  18. Moghimianavval H, Hsu YY, Groaz A et al (2022) In vitro reconstitution platforms of mammalian cell-free expressed membrane proteins. Methods Mol Biol 2433:105–120

    Article  CAS  PubMed Central  Google Scholar 

  19. Majumder S, Hsu YY, Moghimianavval H et al (2022) In vitro synthesis and reconstitution using mammalian cell-free lysates enables the systematic study of the regulation of LINC complex assembly. Biochemistry 61:1495–1507

    Article  CAS  Google Scholar 

  20. Sharma B, Moghimianavval H, Hwang SW et al (2021) Synthetic cell as a platform for understanding membrane-membrane interactions. Membranes (Basel) 11:912

    Article  CAS  Google Scholar 

  21. Groaz A, Moghimianavval H, Tavella F et al (2021) Engineering spatiotemporal organization and dynamics in synthetic cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 13. https://doi.org/10.1002/wnan.1685

  22. Mátés L, Chuah MKL, Belay E et al (2009) Molecular evolution of a novel hyperactive slee** beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen P. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moghimianavval, H., Mohapatra, S., Liu, A.P. (2024). A Mammalian-Based Synthetic Biology Toolbox to Engineer Membrane–Membrane Interfaces. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation