Genetic Code Expansion in Pseudomonas putida KT2440

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

  • 569 Accesses

Abstract

Emerging microorganism Pseudomonas putida KT2440 is utilized for the synthesis of biobased chemicals from renewable feedstocks and for bioremediation. However, the methods for analyzing, engineering, and regulating the biosynthetic enzymes and protein complexes in this organism remain underdeveloped.

Such attempts can be advanced by the genetic code expansion-enabled incorporation of noncanonical amino acids (ncAAs) into proteins, which also enables further controls over the strain’s biological processes. Here, we give a step-by-step account of the incorporation of two ncAAs into any protein of interest (POI) in response to a UAG stop codon by two commonly used orthogonal archaeal tRNA synthetase and tRNA pairs. Using superfolder green fluorescent protein (sfGFP) as an example, this method lays down a solid foundation for future work to study and enhance the biological functions of KT2440.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kampers LF, Volkers RJ, Martins Dos Santos VA (2019) Pseudomonas putida KT 2440 is HV 1 certified, not GRAS. Microb Biotechnol 12:845–848

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  3. Belda E, van Heck RG, José Lopez-Sanchez M et al (2016) The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol 18:3403–3424

    Article  CAS  PubMed  Google Scholar 

  4. Beckham GT, Johnson CW, Karp EM et al (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53

    Article  CAS  PubMed  Google Scholar 

  5. Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29

    Article  CAS  PubMed  Google Scholar 

  6. Nikel PI, de Lorenzo V (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng 50:142–155

    Article  CAS  PubMed  Google Scholar 

  7. Johnson CW, Salvachua D, Rorrer NA et al (2019) Chemicals and materials from bacterial aromatic catabolic pathways. Joule 3:1523–1537

    Article  CAS  Google Scholar 

  8. Niu W, Willett H, Mueller J et al (2020) Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Metab Eng 59:151–161

    Article  CAS  PubMed  Google Scholar 

  9. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  10. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment – expanding the chemistry in biology. Chem Sci 6:50–69

    Article  CAS  PubMed  Google Scholar 

  11. Young DD, Schultz PG (2018) Playing with the molecules of life. ACS Chem Biol 13:854–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dela Torre D, Chin JW (2021) Reprogramming the genetic code. Nat Rev Genet 22:169–184

    Article  PubMed  Google Scholar 

  13. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    Article  CAS  PubMed  Google Scholar 

  14. Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462

    Article  CAS  PubMed  Google Scholar 

  15. Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding Nε-acetyl lysine in recombinant proteins. Nat Chem Biol 4:232–234

    Article  CAS  PubMed  Google Scholar 

  16. Martínez-García E, Aparicio T, Goñi-Moreno A et al (2015) SEVA 2.0: an update of the Standard European Vector Architecture for de−/re-construction of bacterial functionalities. Nucleic Acids Res 43:D1183–D1189

    Article  PubMed  Google Scholar 

  17. Chin JW, Santoro SW, Martin AB et al (2002) Addition of p-Azido- L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027

    Article  CAS  PubMed  Google Scholar 

  18. Yanagisawa T, Ishii R, Fukunaga R et al (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-azido benzyl oxycarbonyl) lysine for site-specific protein modification. Chem Biol 15:1187–1197

    Article  CAS  PubMed  Google Scholar 

  19. Kovach ME, Phillips RW, Elzer PH et al (1994) pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16:800–802

    CAS  PubMed  Google Scholar 

  20. **nyuan H, Tianyu G, Yan C et al (2022) Genetic code expansion in Pseudomonas putida KT2440. ACS Synth 11:3724–3732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiantao Guo or Wei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gao, T., Guo, J., Niu, W. (2024). Genetic Code Expansion in Pseudomonas putida KT2440. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation