Detecting PTP Protein–Protein Interactions by Fluorescent Immunoprecipitation Analysis (FIPA)

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2743))

  • 364 Accesses

Abstract

Identifying protein–protein interactions is crucial for revealing protein functions and characterizing cellular processes. Manipulating PPIs has become widespread in treating human diseases such as cancer, autoimmunity, and infections. It has been recently applied to the regulation of protein tyrosine phosphatases (PTPs) previously considered undruggable. A broad panel of methods is available for studying PPIs. To complement the existing toolkit, we developed a simple method called fluorescent immunoprecipitation analysis (FIPA). This method is based on coimmunoprecipitation followed by protein gel electrophoresis and fluorescent imaging to visualize components of a protein complex simultaneously on a gel. The FIPA allows the detection of proteins expressed under native conditions and is compatible with mass spectrometry identification of protein bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhn M (2020) Turn and face the strange: § a new view on phosphatases. ACS Cent Sci 6:467–477

    Article  PubMed  PubMed Central  Google Scholar 

  2. He RJ, Yu ZH, Zhang RY, Zhang ZY (2014) Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35:1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turdo A, D’Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G (2021) Targeting phosphatases and kinases: how to checkmate cancer. Front Cell Dev Biol 9:2979

    Article  Google Scholar 

  4. Chen YNP, Lamarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CHT, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao HX, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang JH, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD (2016) Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535:148–152

    Article  CAS  PubMed  Google Scholar 

  5. Hendriks W, Bourgonje A, Leenders W, Pulido R (2018) Proteinaceous regulators and inhibitors of protein tyrosine phosphatases. Molecules 23:395

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rhee I, Veillette A (2012) Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 13:439–447

    Article  CAS  PubMed  Google Scholar 

  7. Rao VS, Srinivas K, Su**i GN, Kumar GNS, Rao VS, Srinivas K, Su**i GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysisю Int. J Proteome 2014:147648

    Google Scholar 

  8. Braun P, Gingras A-C (2012) History of protein-protein interactions: from egg-white to complex networks. Proteomics 12:1478–1498

    Article  CAS  PubMed  Google Scholar 

  9. Kim KM, Yi EC, Kim Y (2012) Map** protein receptor-ligand interactions via in vivo chemical crosslinking, affinity purification, and differential mass spectrometry. Methods 56:161–165

    Article  CAS  PubMed  Google Scholar 

  10. Schamel WW (2008) Two-dimensional blue native polyacrylamide gel electrophoresis. Curr Protoc Cell Biol Chapter 6:Unit 6.10

    Google Scholar 

  11. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brzostowski JA, Meckel T, Hong J, Chen A, ** T (2009) Imaging protein-protein interactions by Förster resonance energy transfer (FRET) microscopy in live cells. Curr Protoc Protein Sci Chapter 19(Unit19):5

    Google Scholar 

  13. Fluorescent immunoprecipitation analysis. https://www.protocols.io/view/fluorescent-immunoprecipitation-analysis-ewov1zzpgr24/v1. Accessed 16 Dec 2022

  14. Filatov AV, Krotov GI, Zgoda VG, Volkov Y (2007) Fluorescent immunoprecipitation analysis of cell surface proteins: a methodology compatible with mass-spectrometry. J Immunol Methods 319:21–33

    Article  CAS  PubMed  Google Scholar 

  15. Blixt O, Lavrova OI, Mazurov DV, Cló E, Kračun SK, Bovin NV, Filatov AV (2012) Analysis of Tn antigenicity with a panel of new IgM and IgG1 monoclonal antibodies raised against leukemic cells. Glycobiology 22:529–542

    Article  CAS  PubMed  Google Scholar 

  16. Shuvalova ML, Kopylov AT, Mazurov DV, Pichugin AV, Bovin NV, Filatov AV (2020) CD44-Associated Tn antigen as a new biomarker of tumor cells with aberrant glycosylation. Biochemistry (Mosc) 85:1064–1081

    Article  CAS  PubMed  Google Scholar 

  17. Krotov GI, Krutikova MP, Zgoda VG, Filatov AV (2007) Profiling of the CD4 receptor complex proteins. Biochemistry (Mosc) 72:1216–1224

    Article  CAS  PubMed  Google Scholar 

  18. Kruglova NA, Kopylov AT, Filatov AV. (2019) [Identification of the Molecular Partners of Lymphocyte Phosphatase-Associated Phosphoprotein (LPAP) that are involved in human lymphocyte activation]. Mol Biol (Mosk) 53:838–848, Russian

    Google Scholar 

  19. Kruglova NA (2019) Role of lymphocyte phosphatase associated phosphoprotein (LPAP) in T and B lymphocyte activation. Unpublished doctoral dissertation. Lomonosov Moscow State University

    Google Scholar 

  20. Nitsch A, Haralambiev L, Einenkel R, Muzzio DO, Zygmunt MT, Ekkernkamp A, Burchardt M, Stope MB (2019) Determination of in vitro membrane permeability by analysis of intracellular and extracellular fluorescein signals in renal cells. In Vivo 33:1767–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magalhães N, Simões GM, Ramos C, Samelo J, Oliveira AC, Filipe HAL, Ramalho JPP, Moreno MJ, Loura LMS (2022) Interactions between rhodamine dyes and model membrane systems—insights from molecular dynamics simulations. Molecules 27:1420

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kruglova NA, Meshkova TD, Kopylov AT, Mazurov DV, Filatov AV (2017) Constitutive and activation-dependent phosphorylation of lymphocyte phosphatase-associated phosphoprotein (LPAP). PLoS One 12:e0182468

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi S, Kelber J, Jiang X, Strnadel J, Fujimura K, Pasillas M, Cop**er J, Klemke R (2014) Procedures for the biochemical enrichment and proteomic analysis of the cytoskeletome. Anal Biochem 446:102–107

    Article  CAS  PubMed  Google Scholar 

  24. Filatov AV, Shmigol IB, Kuzin II, Sharonov GV, Feofanov AV (2003) Resistance of cellular membrane antigens to solubilization with Triton X-100 as a marker of their association with lipid rafts – analysis by flow cytometry. J Immunol Methods 278:211–219

    Article  CAS  PubMed  Google Scholar 

  25. Hurley WL, Finkelstein E, Holst BD (1985) Identification of surface proteins on bovine leukocytes by a biotin-avidin protein blotting technique. J Immunol Methods 85:195–202

    Article  CAS  PubMed  Google Scholar 

  26. Cole SR, Ashman LK, Ey PL (1987) Biotinylation: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol 24:699–705

    Article  CAS  PubMed  Google Scholar 

  27. Kähne T, Ansorge S (1994) Non-radioactive labelling and immunoprecipitation analysis of leukocyte surface proteins using different methods of protein biotinylation. J Immunol Methods 168:209–218

    Article  PubMed  Google Scholar 

  28. Schuberth HJ, Kroell A, Leibold W (1996) Biotinylation of cell surface MHC molecules: A complementary tool for the study of MHC class II polymorphism in cattle. J Immunol Methods 189:89–98

    Article  CAS  PubMed  Google Scholar 

  29. Dewari PS, Southgate B, Mccarten K, Monogarov G, O'Duibhir E, Quinn N, Tyrer A, Leitner MC, Plumb C, Kalantzaki M, Blin C, Finch R, Bressan RB, Morrison G, Jacobi AM, Behlke MA, von Kriegsheim A, Tomlinson S, Krijgsveld J, Pollard SM (2018) An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein. elife 7:e35069

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zotova A, Pichugin A, Atemasova A, Knyazhanskaya E, Lopatukhina E, Mitkin N, Holmuhamedov E, Gottikh M, Kuprash D, Filatov A, Mazurov D (2019) Isolation of gene-edited cells via knock-in of short glycophosphatidylinositol-anchored epitope tags. Sci Rep 9:3132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kruglova, N., Filatov, A. (2024). Detecting PTP Protein–Protein Interactions by Fluorescent Immunoprecipitation Analysis (FIPA). In: Thévenin, D., P. Müller, J. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 2743. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3569-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3569-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3568-1

  • Online ISBN: 978-1-0716-3569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation