RNA Secondary Structure Modeling Following the IPANEMAP Workflow

  • Protocol
  • First Online:
RNA Folding

Abstract

The structure of RNA molecules and their complexes are crucial for understanding biology at the molecular level. Resolving these structures holds the key to understanding their manifold structure-mediated functions ranging from regulating gene expression to catalyzing biochemical processes. Predicting RNA secondary structure is a prerequisite and a key step to accurately model their three dimensional structure. Although dedicated modelling software are making fast and significant progresses, predicting an accurate secondary structure from the sequence remains a challenge. Their performance can be significantly improved by the incorporation of experimental RNA structure probing data. Many different chemical and enzymatic probes have been developed; however, only one set of quantitative data can be incorporated as constraints for computer-assisted modelling. IPANEMAP is a recent workflow based on RNAfold that can take into account several quantitative or qualitative data sets to model RNA secondary structure. This chapter details the methods for popular chemical probing (DMS, CMCT, SHAPE-CE, and SHAPE-Map) and the subsequent analysis and structure prediction using IPANEMAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunel C, Romby P (2000) [1] Probing RNA structure and RNA-ligand complexes with chemical probes. In: Methods in enzymology. Academic, United States, pp 3–21

    Google Scholar 

  2. Busan S, Weeks KM (2018) Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cantara WA, Hatterschide J, Wu W, Musier-Forsyth K (2017) RiboCAT: a new capillary electrophoresis data analysis tool for nucleic acid probing. RNA 23:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chillón I, Marcia M, Legiewicz M, Liu F, Somarowthu S, Pyle AM (2015) Chapter One - Native purification and analysis of long RNAs. In: Woodson SA, Allain FHT (eds) Methods in enzymology. Academic, United States, pp 3–37

    Google Scholar 

  5. Deforges J, de Breyne S, Ameur M, Ulryck N, Chamond N, Saaidi A, Ponty Y, Ohlmann T, Sargueil B (2017) Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame. Nucleic Acids Res 45:7382–7400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. PNAS 106:97–102

    Article  CAS  PubMed  Google Scholar 

  7. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flynn RA, Zhang QC, Spitale RC, Lee B, Mumbach MR, Chang HY (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat Protoc 11:273–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frezza E, Courban A, Allouche D, Sargueil B, Pasquali S (2019) The interplay between molecular flexibility and RNA chemical probing reactivities analyzed at the nucleotide level via an extensive molecular dynamics study. Methods 162–163:108–127

    Article  PubMed  Google Scholar 

  11. Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    Article  CAS  PubMed  Google Scholar 

  12. Jaeger L, Westhof E, Michel F (1993) Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4: the active form of the sunY ribozyme is stabilized by multiple interactions with 3′ terminal intron components. J Mol Biol 234:331–346

    Article  CAS  PubMed  Google Scholar 

  13. James L, Sargueil B (2008) RNA secondary structure of the feline immunodeficiency virus 5′UTR and Gag coding region. Nucleic Acids Res 36:4653–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karabiber F, McGinnis JL, Favorov OV, Weeks KM (2013) QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 19:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim H, Cordero P, Das R, Yoon S (2013) HiTRACE-Web: an online tool for robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Res 41:W492–W498

    Article  PubMed  PubMed Central  Google Scholar 

  16. Low JT, Weeks KM (2010) SHAPE-directed RNA secondary structure prediction. Methods 52:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Z, Chang HY (2016) Decoding the RNA structurome. Curr Opin Struct Biol 36:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A (2008) High-throughput single-nucleotide structural map** by capillary automated footprinting analysis. Nucleic Acids Res 36:e63–e63

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145

    Article  CAS  PubMed  Google Scholar 

  21. Mortimer SA, Weeks KM (2009) Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution. Nat Protoc 4:1413–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pang PS, Elazar M, Pham EA, Glenn JS (2011) Simplified RNA secondary structure map** by automation of SHAPE data analysis. Nucleic Acids Res 39:e151

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saaidi A, Allouche D, Regnier M, Sargueil B, Ponty Y (2020) IPANEMAP: integrative probing analysis of nucleic acids empowered by multiple accessibility profiles. Nucleic Acids Res 48:8276–8289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smola MJ, Rice GM, Busan S, Siegfried NA, Weeks KM (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 10:1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B, Jung J-W, Kuchelmeister HY, Batista PJ, Torre EA, Kool ET et al (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steen K-A, Rice GM, Weeks KM (2012) Fingerprinting non-canonical and tertiary RNA structures by differential SHAPE reactivity. J Am Chem Soc 134:13160–13163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strobel EJ, Yu AM, Lucks JB (2018) High-throughput determination of RNA structures. Nat Rev Genet 19:615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uhlenbeck OC (1995) Kee** RNA happy. RNA 1:4–6

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Weill L, Louis D, Sargueil B (2004) Selection and evolution of NTP-specific aptamers. Nucleic Acids Res 32:5045–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilkinson KA, Merino EJ, Weeks KM (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  CAS  PubMed  Google Scholar 

  31. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6:e96

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yoon S, Kim J, Hum J, Kim H, Park S, Kladwang W, Das R (2011) HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27:1798–1805

    Article  CAS  PubMed  Google Scholar 

  33. Zubradt M, Gupta P, Persad S, Lambowitz AM, Weissman JS, Rouskin S (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in B.S laboratory is funded by the CNRS, the Université Paris Cité, a grant from “la Fondation pour la Recherche Médicale” (FRM DBI20141423337), ANR INSANNE (ANR 21-CE45-0034-03), ANR PARNASSUS (ANR 19-CE45-0023-02), and ANR DECRYPTED (ANR 19-CE30-0021-03), awarded to BS and YP laboratories. AS and DA were recipient of a PhD fellowship from FRM (FRM DBI20141423337); GdB was recipient of a fellowship from the French Ministry for Education and Research (MESR); PH was recipient of a fellowship from ANR PRE-RIBO60S (ANR 20-CE12-0026-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yann Ponty or Sargueil Bruno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allouche, D. et al. (2024). RNA Secondary Structure Modeling Following the IPANEMAP Workflow. In: Lorenz, R. (eds) RNA Folding. Methods in Molecular Biology, vol 2726. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3519-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3519-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3518-6

  • Online ISBN: 978-1-0716-3519-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation