A Seedling Growth Inhibition Assay to Measure Phytocytokine Activity

  • Protocol
  • First Online:
Plant Peptide Hormones and Growth Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2731))

  • 508 Accesses

Abstract

The study of immunomodulatory peptides, both of exogenous and endogenous origin, attracted increasing attention over the last years. Numerous methods are widely used to study the sensitivity of plants to peptide elicitation, ranging from measuring early to late induced responses. Seedling growth inhibition is a prominent and easy-to-measure output induced by prolonged peptide treatment. Here, we describe a robust Arabidopsis thaliana seedling growth inhibition experiment that can be used to measure the direct growth-inhibitory effect of peptides, exemplified by RAPID ALKALINIZATION FACTOR 23 (RALF23) treatment. We also show how the assay can be used to assess the modulatory effect of peptide co-treatment on microbe-associated molecular pattern (MAMP)-triggered seedling growth inhibition, exemplified by GOLVEN 2 (GLV2)`s effect on flagellin (flg22)-induced seedling growth inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olsson V, Joos L, Zhu S et al (2019) Look closely, the beautiful may be small: precursor-derived peptides in plants. Annu Rev Plant Biol 70(1–1):34. https://doi.org/10.1146/annurev-arplant-042817-040413

    Article  CAS  Google Scholar 

  2. Gust AA, Pruitt R, Nürnberger T (2017) Sensing danger: key to activating plant immunity. Trends Plant Sci 22:779–791. https://doi.org/10.1016/j.tplants.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  3. Hou S, Liu D, He P (2021) Phytocytokines function as immunological modulators of plant immunity. Stress Biol 1:8. https://doi.org/10.1007/s44154-021-00009-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rzemieniewski J, Stegmann M (2022) Regulation of pattern-triggered immunity and growth by phytocytokines. Curr Opin Plant Biol 68:102230. https://doi.org/10.1016/j.pbi.2022.102230

    Article  CAS  PubMed  Google Scholar 

  5. Zipfel C, Robatzek S, Navarro L et al (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767. https://doi.org/10.1038/nature02485

    Article  CAS  PubMed  Google Scholar 

  6. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  7. DeFalco TA, Zipfel C (2021) Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell 81:3449–3467. https://doi.org/10.1016/j.molcel.2021.07.029

    Article  CAS  PubMed  Google Scholar 

  8. Ngou BPM, Ding P, Jones JDG (2022) Thirty years of resistance: zig-Zag through the plant immune system. Plant Cell 34:1447–1478. https://doi.org/10.1093/plcell/koac041

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gómez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284. https://doi.org/10.1046/j.1365-313x.1999.00451.x

    Article  PubMed  Google Scholar 

  10. Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125:749–760. https://doi.org/10.1016/j.cell.2006.03.037

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Wu Y, Yang F et al (2013) BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc Natl Acad Sci U S A 110:6205–6210. https://doi.org/10.1073/pnas.1215543110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gully K, Pelletier S, Guillou M-CC et al (2019) The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. J Exp Bot 70:1349–1365. https://doi.org/10.1093/jxb/ery454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287. https://doi.org/10.1093/mp/ssu049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Z, Hou S, Rodrigues O et al (2022) Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605:332–339. https://doi.org/10.1038/s41586-022-04684-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rhodes J, Roman A-O, Bjornson M et al (2022) Perception of a conserved family of plant signalling peptides by the receptor kinase HSL3. elife 11:e74687. https://doi.org/10.7554/eLife.74687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rhodes J, Yang H, Moussu S et al (2021) Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat Commun 12:5494. https://doi.org/10.1038/s41467-021-20932-y

    Article  CAS  Google Scholar 

  17. Whitford R, Fernandez A, Tejos R et al (2012) GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev Cell 22:678–685. https://doi.org/10.1016/j.devcel.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  18. Stegmann M, Zecua-Ramirez P, Ludwig C et al (2022) RGI-GOLVEN signalling promotes cell surface immune receptor abundance to regulate plant immunity. EMBO Rep 23:e53281. https://doi.org/10.15252/embr.202153281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stegmann M, Monaghan J, Smakowska-Luzan E et al (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–289. https://doi.org/10.1126/science.aal2541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stegmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leicher, H., Stegmann, M. (2024). A Seedling Growth Inhibition Assay to Measure Phytocytokine Activity. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Methods in Molecular Biology, vol 2731. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3511-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3511-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3510-0

  • Online ISBN: 978-1-0716-3511-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation