The Nanoliter Osmometer: Thermal Hysteresis Measurement

  • Protocol
  • First Online:
Ice Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2730))

Abstract

The nanoliter osmometer is one of the most common tools in the study of ice-binding proteins (IBPs). It is used not only to measure the thermal hysteresis activity of IBPs but also to explore ice sha**, ice adhesion, and ice growth and melting rates and patterns. The advantage of the nanoliter osmometer for the IBP study and for studying single ice crystals lies in the small sample volume, in the range of nanoliters. Such a small volume enables precise determination and control of the temperature with precision in the range of millidegrees. This chapter describes in detail the process of determination of thermal hysteresis using a nanoliter osmometer operated by a LabVIEW interface. We describe the preparation of suitable capillaries and sample injection, which is a challenging step in the measurement. We then describe the procedure of single crystal formation and the determination of the melting and freezing temperatures. Insights on crucial parameters are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology. 53(2):229–239

    Article  CAS  PubMed  Google Scholar 

  2. Hansen TN, Baust JG (1988) Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm. Tenebrio molitor. Biochim Biophys Acta 957(2):217–221

    Google Scholar 

  3. **ao-Lei Z, Tao-Tao C, Bao-Huai W, Zhi-Fen L, Yun-Biao F, Ling-Bo W et al (2001) DSC study on the thermal hysteresis activity of plant antifreeze proteins. Acta Physico-Chimica Sinica 17(01):66–69

    Article  Google Scholar 

  4. Ding X, Zhang H, Liu W, Wang L, Qian H, Qi X (2014) Extraction of carrot (Daucus carota) antifreeze proteins and evaluation of their effects on frozen white salted noodles. Food Bioprocess Technol 7(3):842–852

    Google Scholar 

  5. Gaede-Koehler A, Kreider A, Canfield P, Kleemeier M, Grunwald I (2012) Direct measurement of the thermal hysteresis of antifreeze proteins (AFPs) using sonocrystallization. Anal Chem 84(23):10229–10235

    Article  CAS  PubMed  Google Scholar 

  6. Olijve LLC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ et al (2016) Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci USA 113(14):3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braslavsky I, Drori R (2013) LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. J Vis Exp 72:e4189

    Google Scholar 

  8. Frick JH, Sauer JR (1973) Examination of a biological cryostat/nanoliter osmometer for use in determining the freezing point of insect hemolymph 1. Ann Entomol Soc Am 66(4):781–783

    Article  Google Scholar 

  9. Prager DJ, Bowman RL (1963) Freezing-point depression: new method for measuring ultramicro quantities of fluids. Science 142(3589):237–239

    Article  CAS  PubMed  Google Scholar 

  10. 01.0001.001 - Clifton Technical Physics Biological Cryostat/Nanoliter Osmometer | Office of History, National Institutes of Health [Internet]. [cited 2022 May 11]. Available from: https://onih.pastperfectonline.com/webobject/C25D0E41-14ED-4B6A-B752-205433281972

  11. Bar-Dolev M, Celik Y, Wettlaufer JS, Davies PL, Braslavsky I (2012) New insights into ice growth and melting modifications by antifreeze proteins. J R Soc Interface 9(77):3249–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drori R, Celik Y, Davies PL, Braslavsky I (2014) Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. J R Soc Interface 11(98):20140526

    Article  PubMed  PubMed Central  Google Scholar 

  13. Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M et al (2013) Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci USA 110(4):1309–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bar M, Celik Y, Fass D, Braslavsky I (2008) Interactions of β-helical antifreeze protein mutants with ice. Cryst Growth Des 8(8):2954–2963

    Google Scholar 

  15. Mizrahy O, Bar-Dolev M, Guy S, Braslavsky I (2013) Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide. PLoS ONE 8(3):e59540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci USA 107(12):5423–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buch JL, Ramløv H (2016) An open source cryostage and software analysis method for detection of antifreeze activity. Cryobiology. 72(3):251–257

    Article  CAS  PubMed  Google Scholar 

  18. Bar Dolev M, Bernheim R, Guo S, Davies PL, Braslavsky I (2016) Putting life on ice: bacteria that bind to frozen water. J R Soc Interface. 13(121)

    Google Scholar 

  19. Ramsay JA, Brown RHJ (1955) Simplified apparatus and procedure for freezing-point determinations upon small volumes of fluid. J Sci Instrum 32(10):372–375

    Article  CAS  Google Scholar 

  20. Ramløv H, DeVries AL, Wilson PW (2005) Antifreeze glycoproteins from the Antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry. Cryo Letters 26(2):73–84

    PubMed  Google Scholar 

  21. Gilbard JP, Farris RL, Santamaria J (1978) Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol 96(4):677–681

    Article  CAS  PubMed  Google Scholar 

  22. Chakrabartty A, Hew CL (1991) The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide. Eur J Biochem 202(3):1057–1063

    Article  CAS  PubMed  Google Scholar 

  23. DeLuca CI, Comley R, Davies PL (1998) Antifreeze proteins bind independently to ice. Biophys J. 74(3):1502–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Micro Ice LtD. www.u-ice.com. Accessed 12 Apr 2022

  25. Vuist JE, Schutyser MAI, Boom RM (2022) Solute inclusion during progressive freeze concentration: A state diagram approach. J Food Eng 320:110928

    Article  CAS  Google Scholar 

  26. Koop T, Luo B, Tsias A, Peter T (2000) Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature. 406(6796):611–614

    Article  CAS  PubMed  Google Scholar 

  27. Bissoyi A, Reicher N, Chasnitsky M, Arad S, Koop T, Rudich Y, Braslavsky I (2019) Ice Nucleation Properties of Ice-binding Proteins from Snow Fleas. Biomolecules 9. https://doi.org/10.3390/biom9100532

  28. Eickhoff L, Dreischmeier K, Zipori A, Sirotinskaya V, Adar C, Reicher N, Braslavsky I, Rudich Y, Koop T (2019) Contrasting behavior of antifreeze proteins: ice growth inhibitors and ice nucleation promoters. J Phys Chem Lett 10:966–972. https://doi.org/10.1021/acs.jpclett.8b03719

    Article  CAS  PubMed  Google Scholar 

  29. Qiu Y, Hudait A, Molinero V (2019) How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency. J Am Chem Soc 141(18):7439–7452

    Article  CAS  PubMed  Google Scholar 

  30. Liu XY, Du N (2004) Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze. J Biol Chem 279(7):6124–6131

    Article  CAS  PubMed  Google Scholar 

  31. Amornwittawat N, Wang S, Banatlao J, Chung M, Velasco E, Duman JG et al (2009) Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochim Biophys Acta 1794(2):341–346

    Article  CAS  PubMed  Google Scholar 

  32. DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172(3988):1152–1155

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Giubertoni G, Bakker HJ, Liu J, Wagner M, Ng DYW et al (2021) Disaccharide residues are required for native antifreeze glycoprotein activity. Biomacromolecules. 22(6):2595–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans RP, Hobbs RS, Goddard SV, Fletcher GL (2007) The importance of dissolved salts to the in vivo efficacy of antifreeze proteins. Comp Biochem Physiol, Part A Mol Integr Physiol. 148(3):556–561

    Article  Google Scholar 

  35. Liu Z, Muldrew K, Wan RG, Elliott JAW (2003) Measurement of freezing point depression of water in glass capillaries and the associated ice front shape. Phys Rev E Stat Nonlin Soft Matter Phys. 67(6 Pt 1):061602

    Article  PubMed  Google Scholar 

  36. Steinhart JS, Hart SR (1968) Calibration curves for thermistors. Deep Sea Research and Oceanographic Abstracts. 15(4):497–503

    Article  Google Scholar 

  37. Steinhart-Hart Thermistor Calculator [Internet] (cited 2022 May 9) Available from: https://daycounter.com/Calculators/Steinhart-Hart-Thermistor-Calculator.phtml

Download references

Acknowledgments

We thank the Israel Science Foundation for financial support.

Conflict of Interest

The corresponding author, Ido Braslavsky, was a co-founder of μIce, which produces nanoliter osmometers, with the editor of this Methods book, Ran Drori.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Braslavsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pariente, N., Bar Dolev, M., Braslavsky, I. (2024). The Nanoliter Osmometer: Thermal Hysteresis Measurement. In: Drori, R., Stevens, C. (eds) Ice Binding Proteins. Methods in Molecular Biology, vol 2730. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3503-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3503-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3502-5

  • Online ISBN: 978-1-0716-3503-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation