Ribosome Profiling of Plants

  • Protocol
  • First Online:
Plant-Virus Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2724))

Abstract

Translation is a key step in control of gene expression, yet most analyses of global responses to a stimulus focus on transcription and the transcriptome. For RNA viruses in particular, which have no DNA-templated transcriptional control, control of viral and host translation is crucial. Here, we describe the method of ribosome profiling (ribo-seq) in plants, applied to virus infection. Ribo-seq is a deep sequencing technique that reveals the translatome by presenting a snapshot of the positions and relative amounts of translating ribosomes on all mRNAs in the cell. In contrast to RNA-seq, a crude cell extract is first digested with ribonuclease to degrade all mRNA not protected by a translating 80S ribosome. The resulting ribosome-protected fragments (RPFs) are deep sequenced. The number of reads map** to a specific mRNA compared to the standard RNA-seq reads reveals the translational efficiency of that mRNA. Moreover, the precise positions of ribosome pause sites, previously unknown translatable open reading frames, and noncanonical translation events can be characterized quantitatively using ribo-seq. As this technique requires meticulous technique, here we present detailed step-by-step instructions for cell lysate preparation by flash freezing of samples, nuclease digestion of cell lysate, monosome collection by sucrose cushion ultracentrifugation, size-selective RNA extraction and rRNA depletion, library preparation for sequencing and finally quality control of sequenced data. These experimental methods apply to many plant systems, with minor nuclease digestion modifications depending on the plant tissue and species. This protocol should be valuable for studies of plant virus gene expression, and the global translational response to virus infection, or any other biotic or abiotic stress, by the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  Google Scholar 

  2. Hershey JWB, Sonenberg N, Mathews MB (2019) Principles of translational control. Cold Spring Harb Perspect Biol 11

    Google Scholar 

  3. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  4. Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA (2020) An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat Plants 6:522–532

    Article  CAS  Google Scholar 

  5. Kage U, Powell JJ, Gardiner DM, Kazan K (2020) Ribosome profiling in plants: what is not lost in translation? J Exp Bot 71:5323–5332

    Article  CAS  Google Scholar 

  6. Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6:400

    Article  Google Scholar 

  7. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  Google Scholar 

  8. Hsu PY, Calviello L, Wu HL, Li FW, Rothfels CJ, Ohler U, Benfey PN (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 113:E7126

    Article  CAS  Google Scholar 

  9. Ingolia NT, Hussmann JA, Weissman JS (2019) Ribosome profiling: global views of translation. Cold Spring Harb Perspect Biol 11

    Google Scholar 

  10. Miras M, Miller WA, Truniger V, Aranda MA (2017) Non-canonical translation in plant RNA viruses. Front Plant Sci 8:494

    Article  Google Scholar 

  11. Smirnova E, Firth AE, Miller WA, Scheidecker D, Brault V, Reinbold C, Rakotondrafara AM, Chung BY, Ziegler-Graff V (2015) Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathog 11:e1004868

    Article  Google Scholar 

  12. Irigoyen N, Firth AE, Jones JD, Chung BY, Siddell SG, Brierley I (2016) High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 12:e1005473

    Article  Google Scholar 

  13. Stern-Ginossar N, Ingolia NT (2015) Ribosome profiling as a tool to decipher viral complexity. Annu Rev Virol 2:335–349

    Article  CAS  Google Scholar 

  14. Xu G, Greene GH, Yoo H, Liu L, Marques J, Motley J, Dong X (2017) Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature 545:487–490

    Article  CAS  Google Scholar 

  15. Wang J, Zhang X, Greene GH, Xu G, Dong X (2022) PABP/purine-rich motif as an initiation module for cap-independent translation in pattern-triggered immunity. Cell 185(3186–3200):e3117

    Google Scholar 

  16. Xu T, Lei L, Shi J, Wang X, Chen J, Xue M, Sun S, Zhan B, **a Z, Jiang N, Zhou T, Lai J, Fan Z (2019) Characterization of maize translational responses to sugarcane mosaic virus infection. Virus Res 259:97–107

    Article  CAS  Google Scholar 

  17. Miller WA, Jackson J, Feng Y (2015) Cis- and trans-regulation of luteovirus gene expression by the 3′ end of the viral genome. Virus Res 206:37–45

    Article  CAS  Google Scholar 

  18. Hebrard E, Poulicard N, Gerard C, Traore O, Wu HC, Albar L, Fargette D, Bessin Y, Vignols F (2010) Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF(iso)4G1 factor correlates with rice susceptibility and RYMV virulence. Mol Plant-microbe Interact 23:1506–1513

    Article  CAS  Google Scholar 

  19. Jiang J, Laliberté J-F (2011) The genome-linked protein VPg of plant viruses – a protein with many partners. Curr Opin Virol 1:347–354

    Article  CAS  Google Scholar 

  20. Kanodia P, Vijayapalani P, Srivastava R, Bi R, Liu P, Miller WA, Howell SH (2020) Control of translation during the unfolded protein response in maize seedlings: life without PERKs. Plant Direct 4:e00241

    Article  CAS  Google Scholar 

  21. Kiniry SJ, Michel AM, Baranov PV (2020) Computational methods for ribosome profiling data analysis. Wiley Interdiscip Rev RNA 11:e1577

    Article  CAS  Google Scholar 

  22. **ao Z, Zou Q, Liu Y, Yang X (2016) Genome-wide assessment of differential translations with ribosome profiling data. Nat Commun 7:11194

    Article  CAS  Google Scholar 

  23. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  24. Martin M (2015) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17

    Google Scholar 

  25. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  Google Scholar 

  27. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  Google Scholar 

  28. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  29. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  Google Scholar 

  30. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  31. Walker DC, Lozier ZR, Bi R, Kanodia P, Miller WA, Liu P (2023) Variational inference for detecting differential translation in ribosome profiling studies. Front Genet 14:1163361

    Article  Google Scholar 

  32. Chung BY, Hardcastle TJ, Jones JD, Irigoyen N, Firth AE, Baulcombe DC, Brierley I (2015) The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. RNA 21:1731–1745

    Article  CAS  Google Scholar 

  33. Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, Landthaler M, Obermayer B, Ohler U (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13:165–170

    Article  CAS  Google Scholar 

  34. Liu Q, Shvarts T, Sliz P, Gregory RI (2020) RiboToolkit: an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution. Nucleic Acids Res 48:W218–W229

    Article  CAS  Google Scholar 

  35. Michel AM, Mullan JP, Velayudhan V, O’Connor PB, Donohue CA, Baranov PV (2016) RiboGalaxy: a browser based platform for the alignment, analysis and visualization of ribosome profiling data. RNA Biol 13:316–319

    Article  Google Scholar 

  36. Cope AL, Anderson F, Favate J, Jackson M, Mok A, Kurowska A, Liu J, MacKenzie E, Shivakumar V, Tilton P, Winterbourne SM, Xue S, Kavoussanakis K, Lareau LF, Shah P, Wallace EWJ (2022) Riboviz 2: a flexible and robust ribosome profiling data analysis and visualization workflow. Bioinformatics 38:2358–2360

    Article  CAS  Google Scholar 

  37. Legrand C, Tuorto F (2020) RiboVIEW: a computational framework for visualization, quality control and statistical analysis of ribosome profiling data. Nucleic Acids Res 48:e7

    Article  Google Scholar 

  38. Kanodia P (2021) Global effects of plant virus infection, viral noncoding RNAs, and unfolded protein response on plant gene expression. Ph.D. dissertation, Iowa State University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Allen Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sonia, J., Kanodia, P., Lozier, Z., Miller, W.A. (2024). Ribosome Profiling of Plants. In: Fontes, E.P., Mäkinen, K. (eds) Plant-Virus Interactions. Methods in Molecular Biology, vol 2724. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3485-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3485-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3484-4

  • Online ISBN: 978-1-0716-3485-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation