A Blood Flow Modeling Framework for Stroke Treatments

  • Protocol
  • First Online:
High Performance Computing for Drug Discovery and Biomedicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2716))

Abstract

Circulatory models can significantly help develop new ways to alleviate the burden of stroke on society. However, it is not always easy to know what hemodynamics conditions to impose on a numerical model or how to simulate porous media, which ineluctably need to be addressed in strokes. We propose a validated open-source, flexible, and publicly available lattice-Boltzmann numerical framework for such problems and present its features in this chapter. Among them, we propose an algorithm for imposing pressure boundary conditions. We show how to use the method developed by Walsh et al. (Comput Geosci 35(6):1186–1193, 2009) to simulate the permeability law of any porous medium. Finally, we illustrate the features of the framework through a thrombolysis model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner A, Ehlers W (2008) A porous media model to describe the behaviour of brain tissue. PAMM 8(1):10201–10202. ISSN: 1617-7061. https://doi.org/10.1002/pamm.200810201

  2. Padmos RM et al (2021) Coupling one-dimensional arterial blood flow to three-dimensional tissue perfusion models for in silico trials of acute ischaemic stroke. Interface Focus 11(1):20190125. ISSN: 2042–8901, 2042–8901. https://doi.org/10.1098/rsfs.2019.0125

    Google Scholar 

  3. Piebalgs A et al (2018) Computational simulations of thrombolytic therapy in acute ischaemic Stroke. Sci Rep 8(1). ISSN: 2045–2322. https://doi.org/10.1038/s41598-018-34082-7

  4. Piebalgs A, Yun Xu X (2018) Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow. J R Soc Interface 12(113):20150949. ISSN: 1742-5689, 1742–5662. https://doi.org/10.1098/rsif.2015.0949

  5. Sun C, Munn LL (2008) Lattice Boltzmann simulation of blood flow in digitized vessel networks. Comput Math Appl 55(7):1594–1600. ISSN: 0898-1221. https://doi.org/10.1016/j.camwa.2007.08.019

  6. Závodszky G (2015) Hemodynamic investigation of arteries using the lattice Boltzmann method. PhD thesis. https://doi.org/10.13140/RG.2.1.4110.5448

  7. Latt J et al (2020) Palabos: parallel lattice Boltzmann solver. Comput Math Appl ISSN: 08981221. https://doi.org/10.1016/j.camwa.2020.03.022

  8. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505–1508. https://doi.org/10.1103/PhysRevLett.56.1505

    Article  CAS  PubMed  Google Scholar 

  9. He X, Luo L-S (1997) Lattice Boltzmann model for the incompressible Navier–Stokes equation. J Stat Phys 88(3/4):927–944. ISSN: 0022-4715. https://doi.org/10.1023/B:JOSS.0000015179.12689.e4

  10. **aoyi He and Li-Shi Luo (1997) Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56(6):6811–6817. ISSN: 1063-651X, 1095–3787. https://doi.org/10.1103/PhysRevE.56.6811

  11. Chopard B et al (2002) Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv Complex Syst 5(02n03):103–246. ISSN: 0219-5259, 1793–6802. https://doi.org/10.1142/S0219525902000602

  12. Krüger T et al (2017) The lattice Boltzmann method: principles and practice. Graduate texts in physics. Springer, Cham. ISBN: 978-3-319-44647-9; 978-3-319-44649-3. https://doi.org/10.1007/978-3-319-44649-3

  13. Succi S (2018) The lattice Boltzmann equation: for complex states of flowing matter. Oxford University Press, Oxford. ISBN: 978-0-19-959235-7. https://doi.org/10.1093/oso/9780199592357.001.0001

    Book  Google Scholar 

  14. Malaspinas O et al (2015) A spatio-temporal model for spontaneous thrombus formation in cerebral aneurysms. https://doi.org/10.1101/023226

  15. Li R et al (2014) Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels. Phys Rev E 90(3). ISSN: 1539-3755, 1550-2376. https://doi.org/10.1103/PhysRevE.90.033301

  16. Li S, Chopard B, Latt J (2019) Continuum model for flow diverting stents in 3D patient-specific simulation of intracranial aneurysms. J Comput Sci 38:101045. ISSN: 1877-7503. https://doi.org/10.1016/j.jocs.2019.101045

  17. Kotsalos C, Latt J, Chopard B: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. J Comput Phys 398:108905. ISSN: 0021-9991. https://doi.org/10.1016/j.jcp.2019.108905

  18. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev 94(3):511–525. https://doi.org/10.1103/PhysRev.94.511

    CAS  Google Scholar 

  19. Shan X, Yuan X-F, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J Fluid Mech 550:413–441. ISSN: 1469-7645, 0022-1120. https://doi.org/10.1017/S0022112005008153

  20. **u-Ying K et al (2005) Simulation of blood flow at vessel bifurcation by lattice Boltzmann method. Chin Phys Lett 22(11):2873. ISSN: 0256-307X. https://doi.org/10.1088/0256-307X/22/11/041

  21. Walsh SD, Burwinkle H, Saar MO (2009) A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Comput Geosci 35(6):1186–1193. ISSN: 00983004. https://doi.org/10.1016/j.cageo.2008.05.004

  22. Darcy H (1856). Les fontaines publiques de la ville de Dijon. https://gallica.bnf.fr/ark:/12148/bpt6k624312 (visited on 12/18/2021)

  23. Davies CN (1952) The separation of airborne dust and particles. Inst Mech Eng B1:185–213

    Google Scholar 

  24. Clague DS et al (2000) Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method. Phys. Rev. E 61(1):616–625. ISSN: 1063-651X, 1095–3787. https://doi.org/10.1103/PhysRevE.61.616

  25. Jackson GW, James DF (1986) The permeability of fibrous porous media. Can J Chem Eng 64(3):364–374. ISSN: 00084034, 1939019X. https://doi.org/10.1002/cjce.5450640302

  26. Wufsus AR, Macera NE, Neeves KB (2013) The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys J 104(8):1812–1823. ISSN: 00063495. https://doi.org/10.1016/j.bpj.2013.02.055

  27. Sorimachi T et al (2011) Blood pressure measurement in the artery proximal and distal to an intra-arterial embolus during thrombolytic therapy. J NeuroIntervent Surg 3(1):43–46. ISSN: 1759–8478, 1759–8486. https://doi.org/10.1136/jnis.2010.003061

    Google Scholar 

  28. Diamond SL, Anand S (1993) Inner clot diffusion and permeation during fibrinolysis. Biophys J 65(6):2622–2643. ISSN: 00063495. https://doi.org/10.1016/S0006-3495(93)81314-6

  29. Saqr KM et al (2020) Physiologic blood flow is turbulent. Sci Rep 10(1):15492. issn: 2045-2322. https://doi.org/10.1038/s41598-020-72309-8

  30. Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1):327–387. ISSN: 0031-9333. https://doi.org/10.1152/physrev.00047.2009

  31. Saqr KM et al (2020) What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. J Cerebral Blood Flow Metabol 40(5):1021–1039. ISSN: 0271-678X. https://doi.org/10.1177/0271678X19854640

  32. Rashad S et al (2020) Epigenetic response of endothelial cells to different wall shear stress magnitudes: a report of new mechano-miRNAs. J Cell Physiol. 235(11):7827–7839 ISSN: 1097–4652. https://doi.org/10.1002/jcp.29436

  33. Ali MA, Umer R, Khan KA (2019) Equivalent permeability of adjacent porous regions. In: 2019 Advances in science and engineering technology international conferences (ASET), pp. 1–4. https://doi.org/10.1109/ICASET.2019.8714226

  34. Terreros NA et al (2020) From perviousness to permeability, modelling and measuring intra-thrombus flow in acute ischemic stroke. J Biomech 111:110001. ISSN: 00219290. https://doi.org/10.1016/j.jbiomech.2020.110001

  35. Csippa B et al (2020) Hydrodynamic resistance of intracranial flow-diverter stents: measurement description and data evaluation. Cardiovasc Eng Technol 11(1):1–13. ISSN: 1869–4098. https://doi.org/10.1007/s13239-019-00445-y

  36. Li S (2019) Continuum model for flow diverting stents of intracranial aneurysms. https://archive-ouverte.unige.ch/unige:115538

  37. INSIST (2017) In Silico Clinical Trials for treatment of acute ischemic stroke (INSIST) H2020 project. https://insist-h2020.eu/

Download references

Acknowledgements

This research has been developed under the umbrella of the CompBioMed Consortium and the INSIST project [37], which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 777072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Chopard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Petkantchin, R., Raynaud, F., Boudjeltia, K.Z., Chopard, B. (2024). A Blood Flow Modeling Framework for Stroke Treatments. In: Heifetz, A. (eds) High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, vol 2716. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3449-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3449-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3448-6

  • Online ISBN: 978-1-0716-3449-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation