Delivering Traumatic Brain Injury to Larval Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

We describe a straightforward, scalable method for administering traumatic brain injury (TBI) to zebrafish larvae. The pathological outcomes appear generalizable for all TBI types, but perhaps most closely model closed-skull, diffuse lesion (blast injury) neurotrauma. The injury is delivered by drop** a weight onto the plunger of a fluid-filled syringe containing zebrafish larvae. This model is easy to implement, cost-effective, and provides a high-throughput system that induces brain injury in many larvae at once. Unique to vertebrate TBI models, this method can be used to deliver TBI without anesthetic or other metabolic agents. The methods simulate the main aspects of traumatic brain injury in humans, providing a preclinical model to study the consequences of this prevalent injury type and a way to explore early interventions that may ameliorate subsequent neurodegeneration. We also describe a convenient method for executing pressure measurements to calibrate and validate this method. When used in concert with the genetic tools readily available in zebrafish, this model of traumatic brain injury offers opportunities to examine many mechanisms and outcomes induced by traumatic brain injury. For example, genetically encoded fluorescent reporters have been implemented with this system to measure protein misfolding and neural activity via optogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 179.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dewan MC, Rattani A, Gupta S et al (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 130:1–18. https://doi.org/10.3171/2017.10.JNS17352

    Article  Google Scholar 

  2. Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104:213–238. https://doi.org/10.1016/j.mcna.2019.11.001

    Article  PubMed  Google Scholar 

  3. Hou R, Moss-Morris R, Peveler R et al (2012) When a minor head injury results in enduring symptoms: a prospective investigation of risk factors for postconcussional syndrome after mild traumatic brain injury. J Neurol Neurosurg Psychiatry 83:217–223. https://doi.org/10.1136/jnnp-2011-300767

    Article  PubMed  Google Scholar 

  4. Hay J, Johnson VE, Smith DH et al (2016) Chronic traumatic encephalopathy: the neuropathological legacy of traumatic brain injury. Annu Rev Pathol 11:21–45. https://doi.org/10.1146/annurev-pathol-012615-044116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gavett BE, Stern RA, McKee AC (2011) Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 30(179–188):xi. https://doi.org/10.1016/j.csm.2010.09.007

    Article  PubMed  Google Scholar 

  6. Ramzan F, Khan MUG, Rehmat A et al (2019) A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks. J Med Syst 44:37. https://doi.org/10.1007/s10916-019-1475-2

    Article  PubMed  Google Scholar 

  7. Bramlett HM, Dietrich WD (2015) Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J Neurotrauma 32:1834–1848. https://doi.org/10.1089/neu.2014.3352

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alyenbaawi H, Allison WT, Mok SA (2020) Prion-like propagation mechanisms in tauopathies and traumatic brain injury: challenges and prospects. Biomol Ther 10. https://doi.org/10.3390/biom10111487

  9. Vink R (2018) Large animal models of traumatic brain injury. J Neurosci Res 96:527–535. https://doi.org/10.1002/jnr.24079

    Article  CAS  PubMed  Google Scholar 

  10. Sorby-Adams AJ, Vink R, Turner RJ (2018) Large animal models of stroke and traumatic brain injury as translational tools. Am J Physiol Regul Integr Comp Physiol 315:R165–R190. https://doi.org/10.1152/ajpregu.00163.2017

    Article  CAS  PubMed  Google Scholar 

  11. Stewart AM, Ullmann JF, Norton WH et al (2015) Molecular psychiatry of zebrafish. Mol Psychiatry 20:2–17. https://doi.org/10.1038/mp.2014.128

    Article  CAS  PubMed  Google Scholar 

  12. Rihel J, Prober DA, Arvanites A et al (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351. https://doi.org/10.1126/science.1183090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishimura Y, Okabe S, Sasagawa S et al (2015) Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. Front Pharmacol 6:257. https://doi.org/10.3389/fphar.2015.00257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cassar S, Adatto I, Freeman JL et al (2020) Use of zebrafish in drug discovery toxicology. Chem Res Toxicol 33:95–118. https://doi.org/10.1021/acs.chemrestox.9b00335

    Article  CAS  PubMed  Google Scholar 

  15. Alyenbaawi H, Kanyo R, Locskai LF et al (2021) Seizures are a druggable mechanistic link between TBI and subsequent tauopathy. elife 10. https://doi.org/10.7554/eLife.58744

  16. Putnam LJ, Willes AM, Kalata BE et al (2019) Expansion of a fly TBI model to four levels of injury severity reveals synergistic effects of repetitive injury for moderate injury conditions. Fly (Austin) 13:1–11. https://doi.org/10.1080/19336934.2019.1664363

    Article  PubMed  Google Scholar 

  17. Katzenberger RJ, Loewen CA, Wassarman DR et al (2013) A drosophila model of closed head traumatic brain injury. Proc Natl Acad Sci U S A 110:E4152–E4159. https://doi.org/10.1073/pnas.1316895110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maheras AL, Dix B, Carmo OMS et al (2018) Genetic pathways of neuroregeneration in a novel mild traumatic brain injury model in adult zebrafish. eNeuro 5. https://doi.org/10.1523/ENEURO.0208-17.2017

    Book  Google Scholar 

  19. Markaki M, Tavernarakis N (2010) Modeling human diseases in caenorhabditis elegans. Biotechnol J 5:1261–1276. https://doi.org/10.1002/biot.201000183

    Article  CAS  PubMed  Google Scholar 

  20. Zulazmi NA, Arulsamy A, Ali I et al (2021) The utilization of small non-mammals in traumatic brain injury research: a systematic review. CNS Neurosci Ther 27:381–402. https://doi.org/10.1111/cns.13590

    Article  PubMed  PubMed Central  Google Scholar 

  21. McCutcheon VP, Liu E, Wang Y, Wen X, Baker AJ (2016) A model of excitotoxic brain injury in larval zebrafish: potential application for high-throughput drug evaluation to treat traumatic brain injury. Zebrafish 13:161–169. https://doi.org/10.1089/zeb.2015.1188

    Article  CAS  PubMed  Google Scholar 

  22. McCutcheon V, Park E, Liu E et al (2017) A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma 34:1382–1393. https://doi.org/10.1089/neu.2016.4497

    Article  PubMed  Google Scholar 

  23. Gan D, Wu S, Chen B, Zhang J (2020) Application of the zebrafish traumatic brain injury model in assessing cerebral inflammation. Zebrafish 17:73–82. https://doi.org/10.1089/zeb.2019.1793

    Article  CAS  PubMed  Google Scholar 

  24. Herzog C, Pons Garcia L, Keatinge M et al (2019) Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo. Development 146:dev174698. https://doi.org/10.1242/dev.174698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crilly S, Njegic A, Laurie SE et al (2018) Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res 7:1617. https://doi.org/10.12688/f1000research.16473.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Ge W, Yuan Z (2015) In vivo three-dimensional characterization of the adult zebrafish brain using a 1325 nm spectral-domain optical coherence tomography system with the 27 frame/s video rate. Biomed Opt Express 6:3932–3940. https://doi.org/10.1364/boe.6.003932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diotel N, Vaillant C, Gabbero C et al (2013) Effects of estradiol in adult neurogenesis and brain repair in zebrafish. Horm Behav 63:193–207. https://doi.org/10.1016/j.yhbeh.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  28. Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech 5:200–209. https://doi.org/10.1242/dmm.007336

    Article  CAS  PubMed  Google Scholar 

  29. Wu CC, Tsai TH, Chang C et al (2014) On the crucial cerebellar wound healing-related pathways and their cross-talks after traumatic brain injury in Danio rerio. PLoS One 9:e97902. https://doi.org/10.1371/journal.pone.0097902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayari B, El Hachimi KH, Yanicostas C et al (2010) Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon. J Neurotrauma 27:959–972. https://doi.org/10.1089/neu.2009.0972

    Article  PubMed  Google Scholar 

  31. Kroehne V, Freudenreich D, Hans S et al (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:4831–4841. https://doi.org/10.1242/dev.072587

    Article  CAS  PubMed  Google Scholar 

  32. März M, Schmidt R, Rastegar S et al (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240:2221–2231. https://doi.org/10.1002/dvdy.22710

    Article  PubMed  Google Scholar 

  33. Baumgart EV, Barbosa JS, Bally-Cuif L et al (2012) Stab wound injury of the zebrafish telencephalon: a model for comparative analysis of reactive gliosis. Glia 60:343–357. https://doi.org/10.1002/glia.22269

    Article  PubMed  Google Scholar 

  34. Skaggs K, Goldman D, Parent JM (2014) Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 62:2061–2079. https://doi.org/10.1002/glia.22726

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lim FT, Ogawa S, Parhar IS (2016) Spred-2 expression is associated with neural repair of injured adult zebrafish brain. J Chem Neuroanat 77:176–186. https://doi.org/10.1016/j.jchemneu.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt R, Beil T, Strähle U et al (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. JVE:e51753–e51753. https://doi.org/10.3791/51753

  37. Ferrier GA, Kaur R, Park E et al (2017) An image-guided focused ultrasound system for generating acoustic shock waves that induce traumatic brain injury in wild-type zebrafish. Can Acoust 45:90–91

    Google Scholar 

  38. Weber B, Lackner I, Haffner-Luntzer M et al (2019) Modeling trauma in rats: similarities to humans and potential pitfalls to consider. J Transl Med 17:305. https://doi.org/10.1186/s12967-019-2052-7

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sempere L, Rodriguez-Rodriguez A, Boyero L et al (2019) Experimental models in traumatic brain injury: from animal models to in vitro assays. Med Intensiva (Engl Ed) 43:362–372. https://doi.org/10.1016/j.medin.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  40. Marmarou CR, Prieto R, Taya K et al (2009) Marmarou weight drop injury model. In: Xu Z, Chen J, Xu XM, Zhang JH (eds) Animal models of acute neurological injuries. Humana Press, Totowa, NJ, pp 393–407

    Chapter  Google Scholar 

  41. Kalish BT, Whalen MJ (2016) Weight drop models in traumatic brain injury. Methods Mol Biol 1462:193–209. https://doi.org/10.1007/978-1-4939-3816-2_12

    Article  CAS  PubMed  Google Scholar 

  42. Archer DP, McCann SK, Walker AM et al (2018) Neuroprotection by anaesthetics in rodent models of traumatic brain injury: a systematic review and network meta-analysis. Br J Anaesth 121:1272–1281. https://doi.org/10.1016/j.bja.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  43. Schifilliti D, Grasso G, Conti A et al (2010) Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs 24:893–907. https://doi.org/10.2165/11584760-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  44. Rowe RK, Harrison JL, Thomas TC et al (2013) Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim (NY) 42:286–291. https://doi.org/10.1038/laban.257

    Article  PubMed  Google Scholar 

  45. Kline AEDCE (2009) Contemporary in vivo models of brain trauma and a comparison of injury responses. In: Miller LP (ed) Head trauma: basic, preclinical, and clinical directions. John Wiley & Sons, New York, NY, pp 65–84

    Google Scholar 

  46. Statler KD, Alexander H, Vagni V et al (2006) Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res 1076:216–224. https://doi.org/10.1016/j.brainres.2005.12.106

    Article  CAS  PubMed  Google Scholar 

  47. Petraglia AL, Plog BA, Dayawansa S et al (2014) The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma 31:1211–1224. https://doi.org/10.1089/neu.2013.3255

    Article  PubMed  PubMed Central  Google Scholar 

  48. McCarroll MN, Gendelev L, Kinser R et al (2019) Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat Commun 10:4078. https://doi.org/10.1038/s41467-019-11936-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Lessen M, Shibata-Germanos S, van Impel A et al (2017) Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development. elife 6. https://doi.org/10.7554/eLife.25932

  50. Eakin K, Rowe RK, Lifshitz J (2015) Modeling fluid percussion injury: relevance to human traumatic brain injury. In: Brain Neurotrauma: molecular, neuropsychological, and rehabilitation aspects. F. H. Kobeissy, Boca Raton

    Google Scholar 

  51. Cernak I, Merkle AC, Koliatsos VE et al (2011) The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis 41:538–551. https://doi.org/10.1016/j.nbd.2010.10.025

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ted Allison .

Editor information

Editors and Affiliations

1 Appendix 1. Code with Explanatory Comments

// Zebrafish TBI pressure sensor measurement // Alexander H. Burton (2020) // define variable holding photoresistor reading float light = 0; // define variable holding pressure reading             float pressure = 0; // define light level to trigger pressure recording \r\n// reduce value of lightthreshold to decrease sensitivity of trigger // increase value of lightthreshold to increase trigger sensitivity float lightthreshold = 400;  // define logical variable that indicates recording should be started boolean start = false;       // board setup // opens serial monitor at the highest baud rate and starts a new line void setup() {  Serial.begin(2000000);      Serial.println("\n");      } // main program loop void loop() {    // read the photoresistor circuit    light = analogRead(A5);       // if the photoresistor voltage fell below threshold (i.e. the light beam    // was broken) set start to ‘true’ to initiate the pressure readings    if (light < lightthreshold) {      start = true;    }    // if light beam was broken, start taking pressure readings    if (start == true) {      // take 2000 consecutive readings     // this value can be changed to make the recording window longer or shorter     // e.g. for (int i = 0; i < 500; i++) takes 500 measurements      for (int i = 0; i < 2000; i++) {       // read the pressure sensor        pressure = analogRead(A1);        // write the timestamp and pressure reading to the serial monitor     Serial.print(millis());        Serial.print("\t");    Serial.print(pressure);     Serial.println(" ");      }      // stop recording until trigger is activated again      start = false;    } }

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gill, T. et al. (2024). Delivering Traumatic Brain Injury to Larval Zebrafish. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation