Live Imaging in Planarians: Immobilization and Real-Time Visualization of Reactive Oxygen Species

  • Protocol
  • First Online:
Schmidtea Mediterranea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2680))

Abstract

Imaging of living animals allows the study of metabolic processes in relation to cellular structures or larger functional entities. To enable in vivo imaging during long-term time-lapses in planarians, we combined and optimized existing protocols, resulting in an easily reproducible and inexpensive procedure. Immobilization with low-melting-point agarose eliminates the use of anesthetics, avoids interfering with the animal during imaging—functionally or physically—and allows recovering the organisms after the imaging procedure. As an example, we used the immobilization workflow to image the highly dynamic and fast-changing reactive oxygen species (ROS) in living animals. These reactive signaling molecules can only be studied in vivo and map** their location and dynamics during different physiological conditions is crucial to understand their role in developmental processes and regeneration. In the current protocol, we describe both the immobilization and ROS detection procedure. We used the intensity of the signals together with pharmacological inhibitors to validate the signal specificity and to distinguish it from the autofluorescent nature of the planarian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Almassalha LM, Chandler JE, Zhou X, Stypula-Cyrus YE, Hujsak KA, Roth EW, Bleher R, Subramanian H, Szleifer I, Dravid VP, Backman V (2017) The effects of chemical fixation on the cellular nanostructure. Exp Cell Res 358(2):253–259. https://doi.org/10.1016/j.yexcr.2017.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Talbot J, Schotz EM (2011) Quantitative characterization of planarian wild-type behavior as a platform for screening locomotion phenotypes. J Exp Biol 214(Pt 7):1063–1067. https://doi.org/10.1242/jeb.052290

    Article  PubMed  Google Scholar 

  3. Stevenson CG, Beane WS (2010) A low percent ethanol method for immobilizing planarians. PLoS One 5(12):e15310. https://doi.org/10.1371/journal.pone.0015310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beane WS, Adams DS, Morokuma J, Levin M (2019) Live imaging of intracellular pH in planarians using the ratiometric fluorescent dye SNARF-5F-AM. Biol Methods Protoc 4:bpz005. https://doi.org/10.1093/biomethods/bpz005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zattara EE, Turlington KW, Bely AE (2016) Long-term time-lapse live imaging reveals extensive cell migration during annelid regeneration. BMC Dev Biol 16:6. https://doi.org/10.1186/s12861-016-0104-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goel T, Wang R, Martin S, Lanphear E, Collins ES (2019) Linalool acts as a fast and reversible anesthetic in hydra. PLoS One 14(10):e0224221. https://doi.org/10.1371/journal.pone.0224221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Collymore C, Tolwani A, Lieggi C, Rasmussen S (2014) Efficacy and safety of 5 anesthetics in adult zebrafish (Danio rerio). J Am Assoc Lab Anim Sci 53(2):198–203

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Leifer AM, Fang-Yen C, Gershow M, Alkema MJ, Samuel AD (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8(2):147–152. https://doi.org/10.1038/nmeth.1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dexter JP, Tamme MB, Lind CH, Collins EM (2014) On-chip immobilization of planarians for in vivo imaging. Sci Rep 4:6388. https://doi.org/10.1038/srep06388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burnett K, Edsinger E, Albrecht DR (2018) Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol 1:73. https://doi.org/10.1038/s42003-018-0079-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Renaud O, Herbomel P, Kissa K (2011) Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat Protoc 6(12):1897–1904. https://doi.org/10.1038/nprot.2011.408

    Article  CAS  PubMed  Google Scholar 

  12. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8(1):e53419. https://doi.org/10.1371/journal.pone.0053419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo SX, Bourgeois F, Chokshi T, Durr NJ, Hilliard MA, Chronis N, Ben-Yakar A (2008) Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat Methods 5(6):531–533. https://doi.org/10.1038/nmeth.1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeng F, Rohde CB, Yanik MF (2008) Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8(5):653–656. https://doi.org/10.1039/b804808h

    Article  CAS  PubMed  Google Scholar 

  15. Oviedo NJ, Nicolas CL, Adams DS, Levin M (2008) Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging, and behavior. CSH Protoc:pdb emo101. https://doi.org/10.1101/pdb.emo101

  16. Aboobaker AA (2011) Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol 21(5):304–311. https://doi.org/10.1016/j.tcb.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  17. Gentile L, Cebria F, Bartscherer K (2011) The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis Model Mech 4(1):12–19. https://doi.org/10.1242/dmm.006692

    Article  CAS  PubMed  Google Scholar 

  18. Hagstrom D, Cochet-Escartin O, Zhang S, Khuu C, Collins EM (2015) Freshwater planarians as an alternative animal model for Neurotoxicology. Toxicol Sci 147(1):270–285. https://doi.org/10.1093/toxsci/kfv129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leynen N, Van Belleghem F, Wouters A, Bove H, Ploem JP, Thijssen E, Langie SAS, Carleer R, Ameloot M, Artois T, Smeets K (2019) In vivo toxicity assessment of silver nanoparticles in homeostatic versus regenerating planarians. Nanotoxicology 13(4):476–491. https://doi.org/10.1080/17435390.2018.1553252

    Article  CAS  PubMed  Google Scholar 

  20. Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'Innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G (2020) Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 115:111113. https://doi.org/10.1016/j.msec.2020.111113

    Article  CAS  PubMed  Google Scholar 

  21. Stevens AS, Pirotte N, Plusquin M, Willems M, Neyens T, Artois T, Smeets K (2015) Toxicity profiles and solvent-toxicant interference in the planarian Schmidtea mediterranea after dimethylsulfoxide (DMSO) exposure. J Appl Toxicol 35(3):319–326. https://doi.org/10.1002/jat.3011

    Article  CAS  PubMed  Google Scholar 

  22. Stevens AS, Wouters A, Ploem JP, Pirotte N, Van Roten A, Willems M, Hellings N, Franken C, Koppen G, Artois T, Plusquin M, Smeets K (2018) Planarians customize their stem cell responses following genotoxic stress as a function of exposure time and regenerative state. Toxicol Sci 162(1):251–263. https://doi.org/10.1093/toxsci/kfx247

    Article  CAS  PubMed  Google Scholar 

  23. Lau AH, Knakievicz T, Pra D, Erdtmann B (2007) Freshwater planarians as novel organisms for genotoxicity testing: analysis of chromosome aberrations. Environ Mol Mutagen 48(6):475–482. https://doi.org/10.1002/em.20307

    Article  CAS  PubMed  Google Scholar 

  24. Upadhyay S, Vergara L, Shah P, Gustafsson JA, Kakadiaris I, Bondesson M (2020) A layered mounting method for extended time-lapse confocal microscopy of whole zebrafish embryos. J Vis Exp 155. https://doi.org/10.3791/60321

  25. Berger S, Lattmann E, Aegerter-Wilmsen T, Hengartner M, Hajnal A, Demello A, Casadevall ISX (2018) Correction: Long-term C. elegans immobilization enables high resolution developmental studies in vivo. Lab Chip 18(12):1802. https://doi.org/10.1039/c8lc90050g

    Article  CAS  PubMed  Google Scholar 

  26. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy KA, Sandiford SD, Skerjanc IS, Li SS (2012) Reactive oxygen species and the neuronal fate. Cell Mol Life Sci 69(2):215–221. https://doi.org/10.1007/s00018-011-0807-2

    Article  CAS  PubMed  Google Scholar 

  28. Pirotte N, Stevens AS, Fraguas S, Plusquin M, Van Roten A, Van Belleghem F, Paesen R, Ameloot M, Cebria F, Artois T, Smeets K (2015) Reactive oxygen species in planarian regeneration: an upstream necessity for correct patterning and brain formation. Oxidative Med Cell Longev 2015:392476. https://doi.org/10.1155/2015/392476

    Article  Google Scholar 

  29. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222–228. https://doi.org/10.1038/ncb2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084. https://doi.org/10.1038/srep02084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katerji M, Filippova M, Duerksen-Hughes P (2019) Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxidative Med Cell Longev 2019:1279250. https://doi.org/10.1155/2019/1279250

    Article  CAS  Google Scholar 

  32. Vaneev AN, Gorelkin PV, Garanina AS, Lopatukhina HV, Vodopyanov SS, Alova AV, Ryabaya OO, Akasov RA, Zhang Y, Novak P, Salikhov SV, Abakumov MA, Takahashi Y, Edwards CRW, Klyachko NL, Majouga AG, Korchev YE, Erofeev AS (2020) In vitro and in vivo electrochemical measurement of reactive oxygen species after treatment with anticancer drugs. Anal Chem 92(12):8010–8014. https://doi.org/10.1021/acs.analchem.0c01256

    Article  CAS  PubMed  Google Scholar 

  33. Yamato M, Egashira T, Utsumi H (2003) Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 35(12):1619–1631. https://doi.org/10.1016/j.freeradbiomed.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  34. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. https://doi.org/10.1038/nmeth866

    Article  CAS  PubMed  Google Scholar 

  35. Miller EW, Tulyathan O, Isacoff EY, Chang CJ (2007) Molecular imaging of hydrogen peroxide produced for cell signaling. Nat Chem Biol 3(5):263–267. https://doi.org/10.1038/nchembio871

    Article  CAS  PubMed  Google Scholar 

  36. Freitas M, Lima JL, Fernandes E (2009) Optical probes for detection and quantification of neutrophils’ oxidative burst. A review Anal Chim Acta 649(1):8–23. https://doi.org/10.1016/j.aca.2009.06.063

    Article  CAS  PubMed  Google Scholar 

  37. Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29(6):539–549. https://doi.org/10.1007/s10059-010-0082-3

    Article  CAS  PubMed  Google Scholar 

  38. Pacheco S, Fung SY, Liu M (2017) Solubility of hydrophobic compounds in aqueous solution using combinations of self-assembling peptide and amino acid. J Vis Exp 127. https://doi.org/10.3791/56158

  39. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65(7):1035–1041. https://doi.org/10.1016/s0006-2952(03)00002-9

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Yuan Z, Zheng M, Sun Y, Wang Y, Yang S (2013) Effects of N,N-dimethylformamide on behaviour and regeneration of planarian Dugesia japonica. Toxicol Ind Health 29(8):753–760. https://doi.org/10.1177/0748233712443148

    Article  CAS  PubMed  Google Scholar 

  41. Lim Y, Shiver AL, Khariton M, Lane KM, Ng KM, Bray SR, Qin J, Huang KC, Wang B (2019) Mechanically resolved imaging of bacteria using expansion microscopy. PLoS Biol 17(10):e3000268. https://doi.org/10.1371/journal.pbio.3000268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzalez-Estevez C, Momose T, Gehring WJ, Salo E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci U S A 100(24):14046–14051. https://doi.org/10.1073/pnas.2335980100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA, Newmark PA (2012) An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 23(4):691–704. https://doi.org/10.1016/j.devcel.2012.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirano K, Chen WS, Chueng AL, Dunne AA, Seredenina T, Filippova A, Ramachandran S, Bridges A, Chaudry L, Pettman G, Allan C, Duncan S, Lee KC, Lim J, Ma MT, Ong AB, Ye NY, Nasir S, Mulyanidewi S, Aw CC, Oon PP, Liao S, Li D, Johns DG, Miller ND, Davies CH, Browne ER, Matsuoka Y, Chen DW, Jaquet V, Rutter AR (2015) Discovery of GSK2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid Redox Signal 23(5):358–374. https://doi.org/10.1089/ars.2014.6202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holland PC, Sherratt HS (1972) Biochemical effects of the hypoglycaemic compound diphenyleneiodonnium. Catalysis of anion-hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem J 129(1):39–54. https://doi.org/10.1042/bj1290039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kucera J, Bino L, Stefkova K, Jaros J, Vasicek O, Vecera J, Kubala L, Pachernik J (2016) Apocynin and Diphenyleneiodonium induce oxidative stress and modulate PI3K/Akt and MAPK/Erk activity in mouse embryonic stem cells. Oxidative Med Cell Longev 2016:7409196. https://doi.org/10.1155/2016/7409196

    Article  CAS  Google Scholar 

  47. Ortega-Villasante C, Buren S, Blazquez-Castro A, Baron-Sola A, Hernandez LE (2018) Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 122:202–220. https://doi.org/10.1016/j.freeradbiomed.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  48. Romero MMG, McCathie G, Jankun P, Roehl HH (2018) Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of hedgehog expressing cells. Nat Commun 9(1):4010. https://doi.org/10.1038/s41467-018-06460-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Q, Wang Y, Man L, Zhu Z, Bai X, Wei S, Liu Y, Liu M, Wang X, Gu X, Wang Y (2016) Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration. Sci Rep 6:20752. https://doi.org/10.1038/srep20752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bijnens K, Jaenen V, Wouters A, Leynen N, Pirotte N, Artois T, Smeets K (2021) A spatiotemporal characterisation of redox molecules in planarians, with a focus on the role of glutathione during regeneration. Biomol Ther 11(5). https://doi.org/10.3390/biom11050714

  51. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94(2):329–354. https://doi.org/10.1152/physrev.00040.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Smeets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jaenen, V., Bijnens, K., Heleven, M., Artois, T., Smeets, K. (2023). Live Imaging in Planarians: Immobilization and Real-Time Visualization of Reactive Oxygen Species. In: Gentile, L. (eds) Schmidtea Mediterranea. Methods in Molecular Biology, vol 2680. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3275-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3275-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3274-1

  • Online ISBN: 978-1-0716-3275-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation