Quantitative Analysis of PcG-Associated Condensates by Stochastic Optical Reconstruction Microscopy (STORM)

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2655))

Abstract

The polycomb group (PcG) proteins play a central role in the maintenance of a repressive state of gene expression. Recent findings demonstrate that PcG components are organized into nuclear condensates, contributing to the resha** of chromatin architecture in physiological and pathological conditions, thus affecting the nuclear mechanics. In this context, direct stochastic optical reconstruction microscopy (dSTORM) provides an effective tool to achieve a detailed characterization of PcG condensates by visualizing them at a nanometric level. Furthermore, by analyzing dSTORM datasets with cluster analysis algorithms, quantitative information can be yielded regarding protein numbers, grou**, and spatial organization. Here, we describe how to set up a dSTORM experiment and perform the data analysis to study PcG complexes’ components in adhesion cells quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kundu S, Ji F, Sunwoo H, Jain G, Lee JT, Sadreyev RI, Dekker J, Kingston RE (2017) Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol Cell 65(3):432–446 e435. https://doi.org/10.1016/j.molcel.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fasciani A, D'Annunzio S, Poli V, Fagnocchi L, Beyes S, Michelatti D, Corazza F, Antonelli L, Gregoretti F, Oliva G, Belli R, Peroni D, Domenici E, Zambrano S, Intartaglia D, Settembre C, Conte I, Testi C, Vergyris P, Ruocco G, Zippo A (2020) MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat Genet 52(12):1397–1411. https://doi.org/10.1038/s41588-020-00724-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Magrassi R, Scalisi S, Cella Zanacchi F (2019) Single-molecule localization to study cytoskeletal structures, membrane complexes, and mechanosensors. Biophys Rev 11(5):745–756. https://doi.org/10.1007/s12551-019-00595-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nicovich PR, Owen DM, Gaus K (2017) Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat Protoc 12(3):453–460. https://doi.org/10.1038/nprot.2016.166

    Article  CAS  PubMed  Google Scholar 

  6. Khater IM, Nabi IR, Hamarneh G (2020) A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 1(3):100038. https://doi.org/10.1016/j.patter.2020.100038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu YL, Tschanz A, Krupnik L, Ries J (2020) Quantitative data analysis in single-molecule localization microscopy. Trends Cell Biol 30(11):837–851. https://doi.org/10.1016/j.tcb.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  8. Endesfelder U, Malkusch S, Fricke F, Heilemann M (2014) A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol 141(6):629–638. https://doi.org/10.1007/s00418-014-1192-3

    Article  CAS  PubMed  Google Scholar 

  9. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3(7):446–454. https://doi.org/10.1002/jbio.200900089

    Article  CAS  PubMed  Google Scholar 

  10. Kiskowski MA, Hancock JF, Kenworthy AK (2009) On the use of Ripley's K-function and its derivatives to analyze domain size. Biophys J 97(4):1095–1103. https://doi.org/10.1016/j.bpj.2009.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lagache T, Lang G, Sauvonnet N, Olivo-Marin JC (2013) Analysis of the spatial organization of molecules with robust statistics. PLoS One 8(12):e80914. https://doi.org/10.1371/journal.pone.0080914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975. https://doi.org/10.1038/nmeth.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schnitzbauer J, Wang Y, Zhao S, Bakalar M, Nuwal T, Chen B, Huang B (2018) Correlation analysis framework for localization-based superresolution microscopy. Proc Natl Acad Sci U S A 115(13):3219–3224. https://doi.org/10.1073/pnas.1711314115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8(2):345–354. https://doi.org/10.1038/nprot.2013.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao J, Wang F, Liu Y, Cai M, Xu H, Jiang J, Wang H (2015) Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging. Sci Rep 5:9045. https://doi.org/10.1038/srep09045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pereira CF, Rossy J, Owen DM, Mak J, Gaus K (2012) HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection. Virol J 9:84. https://doi.org/10.1186/1743-422X-9-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andronov L, Orlov I, Lutz Y, Vonesch JL, Klaholz BP (2016) ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci Rep 6:24084. https://doi.org/10.1038/srep24084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013) Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105(1):172–181. https://doi.org/10.1016/j.bpj.2013.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mazouchi A, Milstein JN (2016) Fast optimized cluster algorithm for localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy. Bioinformatics 32(5):747–754. https://doi.org/10.1093/bioinformatics/btv630

    Article  CAS  PubMed  Google Scholar 

  20. Pike JA, Khan AO, Pallini C, Thomas SG, Mund M, Ries J, Poulter NS, Styles IB (2020) Topological data analysis quantifies biological nanostructure from single molecule localization microscopy. Bioinformatics 36(5):1614–1621. https://doi.org/10.1093/bioinformatics/btz788

    Article  CAS  PubMed  Google Scholar 

  21. Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita JB (2015) SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 12(11):1065–1071. https://doi.org/10.1038/nmeth.3579

    Article  CAS  PubMed  Google Scholar 

  22. Griffie J, Shannon M, Bromley CL, Boelen L, Burn GL, Williamson DJ, Heard NA, Cope AP, Owen DM, Rubin-Delanchy P (2016) A Bayesian cluster analysis method for single-molecule localization microscopy data. Nat Protoc 11(12):2499–2514. https://doi.org/10.1038/nprot.2016.149

    Article  CAS  PubMed  Google Scholar 

  23. Williamson DJ, Burn GL, Simoncelli S, Griffie J, Peters R, Davis DM, Owen DM (2020) Machine learning for cluster analysis of localization microscopy data. Nat Commun 11(1):1493. https://doi.org/10.1038/s41467-020-15293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Zippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scalisi, S., Ahmad, A., D’Annunzio, S., Rousseau, D., Zippo, A. (2023). Quantitative Analysis of PcG-Associated Condensates by Stochastic Optical Reconstruction Microscopy (STORM). In: Lanzuolo, C., Marasca, F. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 2655. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3143-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3143-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3142-3

  • Online ISBN: 978-1-0716-3143-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation