Characterization of Z-DNA by Infrared Spectroscopy

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

Abstract

Infrared spectrum stems from the matter’s absorption of light in the infrared (IR) light region. Generally, this infrared light absorption is due to the transition of vibrational and rotational energy levels of the involved molecule. Since different molecules have different structures and vibration modes, infrared spectroscopy can therefore be widely applied to analyze the chemical compositions and structures of molecules. Here we describe the method of application of infrared spectroscopy in the investigation of Z-DNA in cells, as infrared spectroscopy can distinguish DNA secondary structures sensitively and the band at 930 cm−1 is specifically attributed to the Z-form DNA. Based on the curve fitting, the relative content of Z-DNA in the cells may be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang AH, Quigley GJ, Kolpak FJ et al (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686

    Article  CAS  PubMed  Google Scholar 

  2. Ravichandran S, Subramani VK, Kim KK (2019) Z-DNA in the genome: from structure to disease. Biophys Rev 11:383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rich A, Nordheim A, Wang AH (1984) The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 53:791–846

    Article  CAS  PubMed  Google Scholar 

  4. Behe M, Felsenfeld G (1981) Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A 78:1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peck LJ, Nordheim A, Rich A et al (1982) Flip** of cloned d(pGpG)n.d(pCpG)n DNA sequences from right to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc Natl Acad Sci U S A 79:4560–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sook Ho K, So-Hee L, Ae-Ree L et al (2018) Unveiling the pathway to Z-DNA in the protein-induced B-Z transition. Nucleic Acids Res 46:4129–4137

    Article  Google Scholar 

  8. Schwartz T, Lowenhaupt K, Kim YG et al (1999) Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1. J Biol Chem 274:2899–2906

    Article  CAS  PubMed  Google Scholar 

  9. Wang G, Vasquez KM (2007) Z-DNA, an active element in the genome. Front Biosci 12:4424–4438

    Article  CAS  PubMed  Google Scholar 

  10. Movasaghi Z, Rehman S, Rehman IU (2008) Fourier transform infrared spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179

    Article  CAS  Google Scholar 

  11. Taillandier E, Liquier J (1992) Infrared spectroscopy of DNA. Method Enzymol 211:307–335

    Article  CAS  Google Scholar 

  12. Dovbeshko GI, Chegel VI, Gridina NY et al (2002) Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers 67:470–486

    Article  CAS  PubMed  Google Scholar 

  13. Liu KZ, Li J, Kelsey SM et al (2001) Quantitative determination of apoptosis on leukemia cells by infrared spectroscopy. Apoptosis 6:269–278

    Article  CAS  PubMed  Google Scholar 

  14. Schultz CP, Liu KZ, Kerr PD et al (1998) In situ infrared histopathology of keratinization in human oral/oropharyngeal squamous cell carcinoma. Oncol Res 10:277–286

    CAS  PubMed  Google Scholar 

  15. Diem M, Boydston-White S, Chiriboga L (1999) Infrared spectroscopy of cells and tissues: shining light onto a novel subject. Appl Spectrosc 53:148–161

    Article  Google Scholar 

  16. Jackson M, Sowa MG, Mantsch HH (1997) Infrared spectroscopy: a new frontier in medicine. Biophys Chem 68:109–125

    Article  CAS  PubMed  Google Scholar 

  17. Mccrae KC, Mantsch HH, Thliveris JA et al (2002) Analysis of neoplastic changes in mouse lung using Fourier-transform infrared microspectroscopy. Vib Spectrosc 28:189–197

    Article  CAS  Google Scholar 

  18. Dohy D, Ghomi M, Taillandier E (1989) Interpretation of DNA vibration modes: III–The behaviour of the sugar pucker vibration modes as a function of its pseudorotation parameters. J Biomol Struct Dyn 6:741–754

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed MK, Amiama F, Sealy EA (2009) Unique spectral features of DNA infrared bands of some microorganisms. Spectroscopy 23:291–297

    Article  CAS  Google Scholar 

  20. Li Y, Huang Q, Yao G et al (2020) Remodeling chromatin induces Z-DNA conformation detected through Fourier transform infrared spectroscopy. Anal Chem 92:14452–14458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, F., Huang, Q. (2023). Characterization of Z-DNA by Infrared Spectroscopy. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation